首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Palladium–biscarbene complexes derived from N,N′-bis(1,2,4-triazol-1-yl)methane, which bear an alkyl chain functionalized with a hydroxyl group, have been synthesized ([Pd(L1)Br2] (6) and [Pd(L1)I2] (7) [L1 = 1,1′-(3-hydroxypropylidene)bis(4-butyl-4,5-dihydro-1H-1,2,4-triazol-5-ylidene)]). Each product is obtained as a non-equimolecular mixture of two conformers. The hydroxyl group has been replaced by bromide and methanesulphonate and ( [Pd(L2)Br2] [L2 = 1,1′-(3-bromopropylidene)bis(4-butyl-4,5-dihydro-1H-1,2,4-triazol-5-ylidene)] (9)) and ([Pd(L3)Br2] [L3 = 1,1′-(3-methanesulphonyloxypropylidene)-bis(4-butyl-4,5-dihydro-1H-1,2,4-triazol-5-ylidene)] (10)) were obtained, respectively, as mixtures of conformers. All compounds consist of a six-membered metallacyclic structure in a boat conformation. Major conformers present the functionalized chain in the axial position, while in minor conformers it is located in the equatorial position.  相似文献   

2.
Hybrid B3LYP and non-hybrid OLYP DFT formalism has been applied to neutral and reduced forms of bimetallic hydrotris(3-methylpyrazol-1-yl)borato (Tp3-Me) molybdenum nitrosyl complexes incorporating ethane-1,2-diolate bridges. Direct evidence for localization of an extra electron in mixed-valence compounds {16e:17e} is based on the analysis of electron density, energetic stabilization of asymmetric structures with an electron trapped on one Mo and the splitting of both calculated and experimental νNO stretching frequencies. Differences in the first and second electron affinities calculated in PCM solvent model have been successfully related to cyclic voltammetry measurements. Electronic interactions through saturated ethanediolato bridges are evidenced by the extent of spin density delocalization towards the second Mo center.  相似文献   

3.
The interactions of cyclic trinuclear copper {[3,5-(CF3)2Pz]Cu}3 and silver {[3,5-(CF3)2Pz]Ag}3 complexes with polyhedral borate anions [B10H10]2− and [B12H12]2− in solvents of low-polarity were studied using IR spectroscopy (190-290 K). Two types of complexes were found in solution: {[((3,5-CF3)2PzM)3][BnHn]}2− and {[((3,5-CF3)2PzM)3]2[BnHn]}2− (M = Ag, Cu; n = 10, 12). The stability constants of these complexes were determined from IR-spectra.  相似文献   

4.
Reaction of RCOCH2Tz and PhCOCH(CH2SPh)Tz with M(CO)6 or M(CO)5THF results in RCOCH2TzM(CO)5 and PhCOCH(CH2SPh)TzM(CO)5 (R = phenyl or ferrocenyl, Tz = 1,2,4-triazol-1-yl and M = Mo or W). X-ray crystal structure analyses show that the triazolyl group acts as a monodentate ligand through the exodentate nitrogen atom in these complexes. The electrochemical behavior of these complexes has been investigated by cyclic voltammetry.  相似文献   

5.
Five iron(II) coordination polymers, {[Fe(bte)2(NCS)2][Fe(bte)(H2O)2(NCS)2]}n (1), [Fe(bime)(NCS)2]n (2), [Fe(bime)(dca)2]n (3), [Fe(bime)2(N3)2]n (4) and [Fe(btb)2(NCS)2]n (5), were synthesized using the flexible ligands 1,2-bis(1,2,4-triazol-1-yl)ethane (bte), 1,2-bis(imidazol-1-yl)ethane (bime) and 1,4-bis(1,2,4-triazol-1-yl)butane (btb), together with NCS, dicyanamide (dca) and N3. The compound 1 contains two kinds of motifs (double chain and single chain) and forms a three-dimensional hydrogen bonded network; 2 and 3 contain one-dimensional triple chains; and 4 and 5 form two-dimensional (4, 4) networks. The coordination anions (NCS, dca and N3) and the structural characteristics of the ligands (bte, bime and btb) play an important role in the assembly of the topologies. Magnetic studies reveal that 1-5 remain in the high-spin state over the whole temperature range 2-300 K and no detectable spin-crossover is observed.  相似文献   

6.
Microcalorimetric measurements at elevated temperatures of the heats of thermal decomposition and of iodination of a number of [M(CO)nL6-n] complexes (M = Cr, Mo, W; n = 3, 4; L = py, MeCN) have led to values for the standard enthalpies of formation of the following crystalline compounds (values given in kJ mol?) at 25°C: fac-[Mo(CO)3py3](275 ± 12), fac-[Mo(CO)3(NCCH3)3]  (410 ± 12), fac-[W(CO)3py3](250 ± 12), fac-[W(CO)3(NCCH3)3](405 ± 12) and cis-[Cr(CO)4py2](505 ± 20). From these and other data, including estimated heats of sublimation, the bond enthalpy contributions of the various metalligand bonds in the gaseous metal complexes were evaluated as follows (values in kJ mol?): D(Crpy) 102, D(Mopy) 146, DWPy) 173, D(Mo7z.sbnd;NCMe) 135 and D(WNCMe) 169. For a given metal the bond enthalpy contribution decreased in the order D(MCO) > D(Mpy) > D(Mz.sbnd;NCMe). This order is related to the σ- and π-bonding character of the ligand.  相似文献   

7.
Seeking to enrich the yet less explored field of scorpionate complexes bearing antioxidant properties, we, here, report on the synthesis, characterization and assessment of the antioxidant activity of new complexes derived from three scorpionate ligands. The interaction between the scorpionate ligands thallium(I) hydrotris(5-methyl-indazolyl)borate (TlTp4Bo,5Me), thallium(I) hydrotris(4,5-dihydro-2H-benzo[g]indazolyl)borate (TlTpa) and potassium hydrotris(3-tert-butyl- pyrazolyl)borate (KTptBu), and metal(II) chlorides, in dichloromethane at room temperature, produced a new family of complexes having the stoichiometric formula [M(Tp4Bo,5Me)2] (M = Cu, 1; Zn, 4; Cd, 7), [M(Tpa)2] (M = Cu, 2; Zn, 5; Cd, 8), [Cu(HpztBu)3Cl2] (3), [Zn(TptBu)Cl] (6) and [Cd(BptBu)(HpztBu)Cl] (9). The obtained metal complexes were characterized by Fourier transform infrared spectroscopy, proton nuclear magnetic resonance and elemental analysis, highlighting the total and partial hydrolysis of the scorpionate ligand TptBu during the synthesis of the Cu(II) complex 3 and the Cd(II) complex 9, respectively. An assessment of the antioxidant activity of the obtained metal complexes was performed through both enzymatic and non-enzymatic assays against 1,1-diphenyl-2-picryl- hydrazyl (DPPH·), 2,2′-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), hydroxyl (HO·), nitric oxide (NO·), superoxide (O2) and peroxide (OOH·) radicals. In particular, the complex [Cu(Tpa)2]⋅0.5H2O (2) exhibited significant antioxidant activity, as good and specific activity against superoxide (O2−·), (IC50 values equal to 5.6 ± 0.2 μM) and might be identified as auspicious SOD-mimics (SOD = superoxide dismutase).  相似文献   

8.
Aryl M(κ1-Ar)(CO)nP5−n [M = Mn, Re; Ar = C6H5, 4-CH3C6H4; n = 2, 3; P = P(OEt)3, PPh(OEt)2, PPh2OEt] and Re(κ1-C6H5)(CO)3[Ph2PO(CH2)3OPPh2] complexes were prepared by allowing hydrides MH(CO)nP5−n to react first with triflic acid and then with the appropriate aryl lithium (LiAr) compounds. The complexes were characterized spectroscopically (IR and 1H, 31P, 13C NMR) and by the X-ray crystal structure determination of Re(κ1-C6H5)(CO)3[Ph2PO(CH2)3OPPh2] derivative. Protonation reaction of the aryl complexes with HBF4 · Et2O lead to free hydrocarbons Ar-H and the unsaturated [M(CO)nP5−n]+ cations, separated as solids in the case of [Re(CO)3P2]BF4 derivatives.  相似文献   

9.
Density functional calculations were performed on bonding and structural features of [(ηn-BH4)TM(CO)4] (n = 1, 2, 3; TM = Cr, Mo) complexes. Calculations show that the ground state is bidentate which is in good agreement with experimental results. It has been found that the bridge and terminal hydrogen atoms will interchange by two pathways: (i) twist of BH4 about one of the bridge B-H and (ii) twist of BH4 about one of the terminal B-H. The molecular orbital calculations and natural bond orbital methodologies for different isomers of these complexes have been evaluated. The final results indicate that case (i) is more preferable relative to another case.  相似文献   

10.
1D heterometallic coordination polymer of [(FeII(L)2)(MnIII(salen))(ClO4) · 2CH3CN · CH3OH] (1 · 2CH3CN · CH3OH) has been built through a metalloligand approach (L = hydrotris (1,2,4-triazolyl)borate). Ferrous [FeII(L)2] moiety can be easily incorporated into further extended networks by the facile reduction of ferric antiprismatic [FeIII(L)2]+ metalloligand due to the reducing ability of borate ligands during the reaction. And more, hydroquinone facilitates the reduction. Therefore, we present single crystal X-ray structure analysis of 1 · 2CH3CN · CH3OH along with X-ray absorption spectroscopy to confirm the reduction of iron centres.  相似文献   

11.
Reaction of LWI(CO)n [L=hydrotris(3,5-dimethylpyrazol-1-yl)borate, n=2, 3] with NH4[S2PR2] [R=OEt, OPri, (−)-mentholate (R*), Ph] in acetonitrile or THF results in the formation of the dithio ligand complexes LW(S2PR2-S)(CO)2. The yellow–orange, diamagnetic complexes exhibit IR spectra featuring two ν(CO) bands at ca. 1950 and 1840 cm−1 and 1H-NMR spectra consistent with fluxional behavior in solution. Crystallographic characterisation of LW{S2P(OPri)2-S}(CO)2 revealed a six-coordinate, distorted octahedral complex composed of a tungsten center coordinated by a monodentate dithiophosphate ligand, two cis carbonyl ligands, and a facial, tridentate L ligand. Unlike analogous complexes bearing strictly monodentate sulfur donor ligands, the LW(S2PR2)(CO)2 complexes undergo reactions with oxygen atom donors to produce (carbonyl)oxo complexes of the type LWO(S2PR2-S)(CO).  相似文献   

12.
Three novel molybdenum imido alkylidene N-heterocyclic carbene (NHC) pre-catalysts, that is, Mo(N-t-Bu)(1-(2,6-diisopropylphenyl)-3-isopropyl-4-phenyl-1H-1,2,3-triazol-5-ylidene)(CHCMe2Ph)(OTf)2 ( I1 , OTf = CF3SO3), Mo(N-t-Bu)(1-(2,6-diisopropylphenyl)-3-isopropyl-4-phenyl-1H-1,2,3-triazol-5-ylidene)(CHCMe2Ph)(OTf)(t-BuO) ( I2 ) and Mo(N-2,6-Me2-C6H3)(1,3,4-triphenyl-4,5-dihydro-1H-1,2,4-triazol-5-ylidene)(CHCMe2Ph)(OTf)2 ( I3 ) are presented. Compared to complexes based on imidazol-2-ylidenes or imidazolin-2-ylidenes, (1-(2,6-diisopropylphenyl)-3-isopropyl-4-phenyl-1H-1,2,3-triazol-5-ylidene) used in precatalysts I1 and I2 exerts a comparably strong trans effect to the triflate groups trans to the NHC, while (1,3,4-triphenyl-4,5-dihydro-1H-1,2,4-triazol-5-ylidene) used in I3 has a weaker trans effect on the triflate. In combination with a suitable second anionic ligand at molybdenum, that is, OTf, t-BuO, compounds I1 – I3 require higher temperatures to become active and can thus be used as truly room temperature latent pre-catalysts, even for a highly reactive monomer such as dicyclopentadiene (DCPD). When used as latent precatalysts, I1 – I3 offer access to poly-DCPD with different degrees of cross-linking and glass-transition temperatures (Tg). © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 3028–3033  相似文献   

13.
Reaction of tri(2-furyl)phosphine (PFu3) with [Re2(CO)10−n(NCMe)n] (n = 1, 2) at 40 °C gave the substituted complexes [Re2(CO)10−n(PFu3)n] (1 and 2), the phosphines occupying axial position in all cases. Heating [Re2(CO)10] and PFu3 in refluxing xylene also gives 1 and 2 together with four phosphido-bridged complexes; [Re2(CO)8−n(PFu3)n(μ-PFu2)(μ-H)] (n = 0, 1, 2) (3-5) and [Re2(CO)6(PFu3)2(μ-PFu2)(μ-Cl)] (6) resulting from phosphorus-carbon bond cleavage. A series of separate thermolysis experiments has allowed a detailed reaction pathway to be unambiguously established. A similar reaction between [Re2(CO)10] and PFu3 in refluxing chlorobenzene furnishes four complexes which include 1, 2, 6 and the new binuclear complex [Re2(CO)61-C4H3O)2(μ-PFu2)2] (7). All new complexes have been characterized by a combination of spectroscopic data and single crystal X-ray diffraction studies.  相似文献   

14.
The free carbene 1,3,4-triphenyl-4,5-dihydro-1H-1,2,4-triazol-5-ylidene reacts with trans,cis-RuHCl(PPh3)2(ampy) (ampy = 2-(aminomethyl)pyridine) affording an orthometalated N-heterocyclic carbene complex characterized by an X-ray diffraction study. This compound in presence of NaOH shows very high catalytic activity for the transfer hydrogenation of several ketones to alcohols using 2-propanol as hydrogen source, affording TOF values up to 120,000 h−1 (at 50% conversion).  相似文献   

15.
The “CPNR” ligand may be viewed as being isolobal with fulminate, CNO; however, attempts to prepare a complex of such a ligand resulted instead in a range of novel imino and aminophosphinocarbyne complexes. Sequential treatment of [Mo(≡CBr)(CO)2(Tp*)] (Tp*=hydrotris(dimethylpyrazolyl)borate) with nBuLi and ClP=NMes* (Mes*=C6H2tBu3-2,4,6) afforded mixtures of the complexes [Mo(≡CPnBuNHMes*)(CO)2(Tp*)] and traces of the bimetallic products [Mo22-C2P2O(NHMes)2}(CO)4(Tp*)2] and [Mo22-C2PNHMes)(CO)4(Tp*)2]. The reaction of [W(≡CBr)(CO)2(Tp*)] with nBuLi and ClP=NMes* afforded predominantly the mononuclear carbyne [W{≡CP(=NMes*)nBu2})(CO)2(Tp*)] and traces of the binuclear complex [W2(μ-C2PNHMes)(CO)4(Tp*)2] which is also obtained when tBuLi is used. Although not isolable, the intended complexes [M(≡CPNMes*)(CO)2(Tp*)] could be generated in situ and spectroscopically characterized via the reactions of the stannyl carbynes [M(≡CSnnBu3)(CO)2(Tp*)] and ClP=NMes*. The preceding observations are mechanistically interpreted with reference to a computational interrogation of the model complex [Mo(≡CP=NCH3)(CO)2(Tp*)], the LUMO of which has considerable phosphorus character.  相似文献   

16.
Acetato-bis(pyrazole) complexes [Mo(η3-methallyl)(O2CMe)(CO)2(pzH)2], (methallyl = CH2C(CH3)CH2) and fac-[M(O2CMe)(CO)3(pzH)2], (pzH = pyrazole or 3,5-dimethylpyrazole, dmpzH; M = Mn, Re) are obtained from [Mo(η3-methallyl)Cl(CO)2(NCMe)2] or fac-[MBr(CO)3(NCMe)2] [M = Mn (synthesized in situ), Re], 2 equiv. of pyrazole, and 1 equiv. of sodium acetate for Mo complexes, or silver acetate for Mn or Re complexes. The chlorido-complexes [Mo(η3-methallyl)Cl(CO)2L2] (L = pzH, dmpzH), obtained from the same starting material by substitution of MeCN by pzH or dmpzH, are also described. The crystal structures of the fac-acetato-bis(dimethylpyrazole) complexes present the same pattern of intramolecular hydrogen bonds between the acetate and the dimetylpyrazole ligands, whereas the crystal structures of the fac-acetato-bis(pyrazole) complexes show different hydrogen bonds patterns, with intermolecular interactions. NMR data indicate that these interactions are not maintained in solution.  相似文献   

17.
Two novel inorganic-organic 3D network, namely{[Ln(L)1.5(H2O)2]·5H2O}n [Ln=Y (1), Ce (2)] [Ln(L)1.5(H2O)2]·5H2O [Ln=Y (1), Ce (2)], have been prepared through the assembly of the ligand 1,2-bis[3-(1,2,4-triazolyl)-4-amino-5-carboxylmethylthio]ethane (H2L) and lanthanide (III) salts under hydrothermal condition and structurally characterized by single-crystal X-ray diffractions. In complexes 1 and 2, the L2− anions adopt three different coordination fashions (bidentate chelate, bidentate bridging and bidentate chelate bridging) connecting Ln(III) ions via the oxygen atoms from carboxylate moieties. Both 1 and 2 exhibit 3D network structures with 2-fold interpenetration. Interestingly, the reversible desorption-adsorption behavior of lattice water is significantly observed in the two compounds. The result shows their potential application as late-model water absorbent in the field of adsorption material.  相似文献   

18.
Treatment of M(allyl)(Cl)(CO)2(py)2 (M = Mo, W) with 1 equiv. of potassium pyrazolates in tetrahydrofuran at −78 °C afforded M(allyl)(R2pz)(CO)2(py)n (R2pz = 3,5-disubstituted pyrazolate; n = 1, 2) in 68-81% yields. X-ray crystal structure analyses of Mo(allyl)((CF3)2pz)(CO)2(py)2 and W(allyl)(tBu2pz)(CO)2(py) revealed η1- and η2-coordination of the (CF3)2pz and tBu2pz ligands, respectively. Analogous treatment of Mo(allyl)(Cl)(CO)2(NCCH3)2 with 1 equiv. of tBu2pzK in tetrahydrofuran at −78 °C afforded [Mo(allyl)(tBu2pz)(CO)2]2 in 79% yield. An X-ray crystal structure analysis of [Mo(allyl)(tBu2pz)(CO)2]2 showed a dimeric structure bridged by two μ-η21-tBu2pz ligands. Treatment of M(allyl)(Cl)(CO)2(py)2 with 1 equiv. of lithium 1,3-diisopropylacetamidinate or lithium 1,3-di-tert-butylacetamidinate in diethyl ether at −78 °C afforded M(allyl)(iPrNC(Me)NiPr)(CO)2(py) and M(allyl)(tBuNC(Me)NtBu)(CO)2(py), respectively, in 68-78% yields. The new complexes were characterized by spectral and analytical methods and by X-ray crystal structure determinations. M(allyl)(iPrNC(Me)NiPr)(CO)2(py) adopt pseudo-octahedral geometry about the metal centers, with the 1,3-diisopropylacetamidate ligand nitrogen atoms spanning one axial site and one equatorial site of the octahedron. By contrast, M(allyl)(tBuNC(Me)NtBu)(CO)2(py) adopt pseudo-octahedral structures in which the two 1,3-di-tert-butylacetamidinate ligand nitrogen atoms span two equatorial coordination sites. Sublimation of M(allyl)(tBuNC(Me)NtBu)-(CO)2(py) at 105 °C/0.03 Torr afforded ?7% yields of M(allyl)(tBuNC(Me)NtBu)(CO)2, along with sublimed M(allyl)(tBuNC(Me)NtBu)(CO)2(py). W(allyl)(tBuNC(Me)NtBu)(CO)2 exists in the solid state as a 16-electron complex with distorted square pyramidal geometry. Many of the new complexes undergo dynamic ligand site exchange in solution, and these processes were probed by variable temperature 1H NMR spectroscopy. The volatilities and thermal stabilities were evaluated to determine the potential of the new complexes for use as precursors in thin film growth experiments.  相似文献   

19.
The reaction between η5-C5H5M(CO)3I (M  Mo, W) and isonitriles, RNC, (RNC  PhCH2NC, t-BuNC and 2,6-dimethylphenylisocyanide (XyNC)) is catalysed by the dimer [η5-C5H5M(CO)3]2 (M = Mo, W) to yield η5-C5H5M(CO)3?n(RNC)nI (n = 1–3) and [η5-C5H5Mo(RNC)4]I. The complexes (η5-C5H5)2Mo2(CO)6?n(RNC)n (n = 1, RNC = MeNC, PhCH2NC, XyNC, t-BuNC; n = 2, RNC = t-BuNC) have been prepared in moderate yield from the direct reaction between [η5-C5H5Mo(CO)3]2 and RNC, and also catalyse the above reaction. A reaction pathway involving a fast non-chain radical mechanism and a slower chain radical mechanism is proposed to account for the catalysed reaction.  相似文献   

20.
A series of six carbonylrhodium(I) complexes of three new and three previously reported di(2-3R-pyrazolyl)-p-Z/X-aryl)amido pincer ligands, (RZX)Rh(CO), (R is the substituent at the 3-pyrazolyl position proximal to the metal; Z and X are the aryl substituents para- to the arylamido nitrogen) were prepared. The metal complexes were studied to assess how their properties and reactivities can be tuned by varying the groups along the ligand periphery and how they compared to other known carbonylrhodium(I) pincer derivatives. This study was facilitated by the discovery of a new CuI-catalyzed coupling reaction between 2-(pyrazolyl)-4-X-anilines (X = Me or CF3) and 2-bromoaryl-1H-pyrazoles that allow the fabrication of pincer ligands with two different aryl arms. The NNN-pincer scaffolds provide an electron-rich environment for the carbonylrhodium(I) fragment as indicated by carbonyl stretching frequencies that occur in the range of 1948-1968 cm−1. As such, the oxidative addition (OA) reactions with iodomethane proceed instantaneously to form trans-(NNN-pincer)Rh(Me)(CO)(I) in room temperature acetone solution. The OA reactions with iodoethane proceeded at a convenient rate in acetone near 45 °C which allowed detailed kinetic studies. The relative order of reactivity was found to be (CF3CF3)Rh(CO) < (iPrMeMe)Rh(CO) < (MeMeMe)Rh(CO) ∼ (CF3Me)Rh(CO) < (MeH)Rh(CO) < (MeMe)Rh(CO) with the second order rate constant of the most reactive in the series, k2 = 8 × 10−3 M−1 s−1, being about three orders of magnitude greater than those reported for [Rh(CO)2I2] or CpRh(CO)(PPh3). After oxidative addition, the resultant rhodium(III) complexes were found to be unstable. Although a few trans-(RMeMe)Rh(E = Me, Et, or I)(CO)(I) could be isolated in pure form, all were found to slowly decompose in solution to give different products depending on the 3R-pyrazolyl substituents. Those with unsubstituted pyrazolyls (R = H) decompose with CO dissociation to give insoluble dimeric [(RMeMe)Rh(E)(μ-I)]2 while those with 3-alkylpyrazolyls (R = Me, iPr) decompose to give soluble, but unidentified products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号