首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Complete demethylation of Cp2Ti(CH3)2 in dichloromethane with 2 M equivalent of [η5-(C5H4COOH)]Cr(CO)2NO (5), [η5-(C5H4COOH)]Cr(NO)2X] (X = Cl 6, X = I 7), and [η5-(C5H4COOH)]W(CO)3CH3 (8); gives Cp2Ti{[OC(O)C5H4]Cr(CO)2NO}2 (13), Cp2Ti{[OC(O)C5H4]Cr(NO)2Cl}2 (14), Cp2Ti{[OC(O)C5H4]Cr(NO)2I}2 (15),and Cp2Ti{[OC(O)C5H4]W(CO)3CH3}2 (16), respectively. The chemical shifts of C(2)-C(5) carbon atoms of compounds 13-15 have been assigned using two-dimensional HetCOR NMR spectroscopy. The assigned chemical shifts were compared with the NMR data of their analogues of ferrocene, and the opposite correlation on the assignments was observed for cynichrodenoyl moieties.  相似文献   

2.
Mono-demethylation of Cp2Ti(CH3)2 in dichloromethane with 1 M equivalent of [η5-(C5H4COOH)]Cr(CO)2NO (5), [η5-(C5H4COOH)]Cr(NO)2X] (X = Cl 6, X = I 7) and [η5-(C5H4COOH)]W(CO)3CH3 (8) gives Cp2Ti(CH3){[OC(O)C5H4]Cr(CO)2NO} (9), Cp2Ti(CH3){[OC(O)C5H4]Cr(NO)2Cl} (10), Cp2Ti(CH3){[OC(O)C5H4]Cr(NO)2I} (11) and Cp2Ti(CH3){[OC(O)C5H4]W(CO)3CH3} (12), respectively. The structure of 10 has been solved by X-ray diffraction studies. One of the nitrosyl groups is located at the site away from the exocyclic carbonyl carbon of the Cp(Cr) ring with twist angle of 178.1°. All the data reveals that Cp2Ti(CH3)- is a strong electron-donating group. The opposite correlation was observed on the chemical shift assignments of C(2)-C(5) in compounds 5-12, using HetCOR NMR spectroscopy, as compared with the NMR data of their ferrocene analogues. The electron density distribution in the cyclopentadienyl ring is discussed on the basis of 13C NMR data and those of 10 are compared with the calculations via density functional B3LYP correlation- exchange method.  相似文献   

3.
The dimetallacyclopentenone complexes [Fe2Cp2(CO)(μ−CO){μ−η13−CαHCβ(R)C(O)}] (R = CH2OH, 1a; R = CMe2OH, 1b; R = Ph, 1c) were prepared by photolytic reaction of [Fe2Cp2(CO)4] with alkyne according to the literature procedure. The X-ray and the electrochemical characterization of 1c are presented. The μ-allenyl compound [Fe2Cp2(CO)2(μ−CO){μ−η12α,β−CαHCβCMe2][BF4] ([2][BF4]), obtained by reaction of 1b with HBF4, underwent monoelectron reduction to give a radical species which was detected by EPR at room temperature. The EPR signal has been assigned to [Fe2Cp2(CO)2(μ−CO){μ−η12α,β-CαHCβCMe2}], [2]. The molecular structures of [2]+ and [2] were optimized by DFT calculations. The unpaired electron in [2] is localized mainly at the metal centers and, coherently, [2] does not undergo carbon-carbon dimerization, by contrast with what previously observed for the μ-vinyl radical complex [Fe2Cp2(CO)2(μ−CO){μ−η12-CHCH(Ph)}], [3]. Electron spin density distributions similar to the one of [2] were found for the μ-allenyl radical complexes [Fe2Cp2(CO)2(μ-CO){μ-η12α,β-CαHCβC(R1)(R2)}] (R1 = R2 = H, [4]; R1 = H, R2 = Ph, [5]; R1 = R2 = Ph, [6]).  相似文献   

4.
New bimetallic complex [Cp2ZrH2 · ClAlEt2]2 (1) was synthesized, and its reactivity in hydrometallation reaction with the following alkenes was studied: hept-1-ene, okt-1-ene, α-methylstyrene, (1S)-β-pinene, (+)-camphene. Complex 1 shows the highest reactivity among the other known Al,Zr-bimetallic complexes: [Cp2ZrH2 · ClAlBui2]2 (2), [Cp2ZrH2 · AlEt3]2 (3), [Cp2ZrH2 · AlBui3]2 (4) and [Cp2ZrH2 · HAlBui2] (5) as well as organoaluminium compounds (OAC): iBu2AlH, iBu3Al and iBu2AlCl in presence of Zr catalysts. Chlorine containing complexes 1 and 2 appear to be more effective in alkene hydrometallation, and relative hydrometallation rates are (1S)-β-pinene ? (+)-camphene < α-methylstyrene < oct-1-ene < hept-1-ene. Hydrometallation of (1S)-β-pinene and its subsequent oxidation with I2 run with high diastereoselectivity and yield trans-myrtanol. However, the diastereoselectivity of (+)-camphene hydrometallation is less than that for (1S)-β-pinene, and the reaction gives predominately endo-camphanol.  相似文献   

5.
A series of reactivity studies of the carboamination pre-catalyst [Ti(NMe2)3(NHMe2)][B(C6F5)4] as well as the preparation of other catalysts are reported in this work. Treatment of [Ti(NMe2)3(NHMe2)][B(C6F5)4] with the aldimines Ar′NCHtol (Ar′ = 2,6-Me2C6H3, tol = 4-MeC6H4), and depending on the reaction conditions, results in isolation of [Me2NCHR′][B(C6F5)4] (1) or (Me2N)2CHtol, as well as the asymmetric titanium dimer [(Me2N)2(HNMe2)Ti(μ2-N[2,6-Me2C6H3])2Ti(NHMe2)(NMe2)][B(C6F5)4] (2). Protonation of CpTi(NMe2)3 and CpTi(NMe2)3 results in isolation of the salts, [CpTi(NMe2)2(NHMe2)][B(C6F5)4] (3) and [CpTi(NMe2)2(NHMe2)][B(C6F5)4] (4), respectively. Treatment of compounds 3 or 4 with H2N[2,6-iPr2C6H3] results in formation of the imido salts [CpTi(N[2,6-iPr2C6H3])(NHMe2)2][B(C6F5)4] (5) (58% yield) or [CpTi(N[2,6-iPr2C6H3])(NHMe2)2][B(C6F5)4] (6). When Ti(NMe2)4 is treated with [Et3Si][B(C6F5)4], the salt [Ti(NMe2)3(N[SiEt3]Me2)][B(C6F5)4] (7) is obtained, and treatment of the latter with [2,6-iPr2C6H3]NCHtol produces the imine adduct [Ti(NMe2)31-[2,6-iPr2C6H3]NCHtol)][B(C6F5)4] (8). The carboamination catalytic activity of complexes 2-7 was investigated and compared to [Ti(NMe2)3(NHMe2)][B(C6F5)4]. Likewise, a proposed mechanism to the active carboamination catalyst stemming from [Ti(NMe2)3(NHMe2)][B(C6F5)4] is described.  相似文献   

6.
The reactivity pattern of the 16-electron species [M(Cp)2Cl2] (M = Zr, Hf; Cp− = η5-C5H5) and [Ti(MeCp)2Cl2] (MeCp− = η5-C5H4CH3) towards the dipicolinate(−2) (dipic2−) ligand under mild (ambient temperature) and convenient (aerobic reactions, aqueous media) conditions have been investigated. The syntheses, molecular structures and spectroscopic (IR, 1H NMR) characterization are reported for the 18-electron products [Zr(Cp)2(dipic)] (1), [Hf(Cp)2(dipic)] (2) and [Ti(MeCp)2(dipic)] (3). The dipic2− ion behaves as N,O,O′-chelating ligand in the three complexes, while the centroids of the Cp (1, 2) and MeCp (3) rings formally occupy the fourth and fifth coordination sites about the central metal. The two identical/very similar bite angles of only ∼70° make the dipic2− ligand particularly suited to form stable metallocene derivatives with 5-coordinate geometry. IR and 1H NMR data are discussed in terms of the known structures and the tridentate chelating mode of the dipic2− ligand.  相似文献   

7.
Self-assembly of presynthesized [Sb2(tart)2]2− metalloligand as molecular building block with metal salts affords three unique heterometallic coordination polymers, namely, {[Ln(H2O)6][Sb2(tart)2]}Cl·5H2O (Ln = La (1), Pr (2)) and {[Ba2(H2O)7][Sb2(tart)2]2}·4H2O (3), (tart = tartaric acid). Their structures were determined by single crystal X-ray diffraction analyses and further characterized by elemental analyses, IR spectra, and TG analyses. Compounds 1 and 2 are isostructural and represent the first examples of lanthanide-organic open frameworks containing [Sb2(tart)2]2− metalloligands. The structures of 1 and 2 contain left-handed and right-handed layer, each built up from the same-handed helical chains. Compound 3 consists of two kinds of arm-shaped chiral layers, which alternately stack in a heterochiral fashion to yield a racemic 3D hydrogen-bonded network with 1D channels along the a axis. To the best of our knowledge, compounds 1-3 are the first 2D chiral layer frameworks constructed from [Sb2(tart)2]2− metalloligands and rare-earth or alkaline-earth metal ions.  相似文献   

8.
Thioantimonate compounds of [Mn(en)3]2Sb2S5 (1) and [Ni(en)3(Hen)]SbS4 (2) (en=ethylenediamine) were prepared by reaction of transition metal chloride with Sb and S8 powders under solvothermal conditions. Compound 1 consists of discrete [Sb2S5]4− anion, which is formed by corner-sharing SbS3 trigonal pyramids. Compound 2 is composed of discrete tetrahedral [SbS4]3− anion. The compounds 1 and 2 are charge compensated by [M(en)3]2+ cations, whereas in the crystal of 2 there is another counter ion of [Hen]+. The results of the synthesis suggest that the temperature, the concentration and the existing states of the starting materials and so on are important for the structure and composition of the final products. In addition, the oxidation-state of antimony might be related to the molar ratio of the reactants. Excess amount of elemental S is beneficial to the higher oxidation-state of thioantimonate (V). Compound 1 decomposes from 150°C to 350°C, while compound 2 decomposes from 200°C to 350°C remaining Sb2S3 and NiSbS as residues.  相似文献   

9.
[Cp4Fe4(CO)4] (1) reacts with p-BrC6H4Li and MeOH in sequence to afford the functionalized cluster [Cp3Fe4(CO)4(C5H4-p-C6H4Br)] (2), while the reaction of 2 with n-BuLi and MeOH produces [Cp2Fe4(CO)4(C5H4Bu)(C5H4-p-C6H4Br)] (3). The double cluster [Cp3Fe4(CO)4(C5H4)]2(p-C6H4) (4) has been prepared by treatment of [Cp4Fe4(CO)4] with p-C6H4Li2 and MeOH in sequence. The electrochemistry of 2 and 4, as well as the crystal structure of 4 have been investigated.  相似文献   

10.
Two hetero-binuclear complexes [CpCoS2C2(B9H10)][Rh(COD)] (2a) and [CpCoSe2C2(B10H10)][Rh(COD)] (2b) [Cp = η5-pentamethylcyclopentadienyl, COD = cyclo-octa-1,5-diene (C8H12)] were synthesized by the reactions of half-sandwich complexes [CpCoE2C2(B10H10)] [E = S (1a), Se (1b)] with low valent transition metal complexes [Rh(COD)(OEt)]2 and [Rh(COD)(OMe)]2. Although the reaction conditions are the same, the structures of two products for dithiolato carborane and diselenolato carborane are different. The cage of the carborane in 2a was opened; However, the carborane cage in 2b was intact. Complexes 2a and 2b have been fully characterized by 1H, 11B NMR and IR spectroscopy, as well as by elemental analyses. The molecular structures of 2a and 2b have been determined by single-crystal X-ray diffraction analyses and strong metal-metal interactions between cobalt and rhodium atoms (2.6260 Å (2a) and 2.7057 Å (2b)) are existent.  相似文献   

11.
A series of novel octahedral nickel(II) dithiocarbamate complexes involving bidentate nitrogen-donor ligands (phen = 1,10-phenanthroline, bpy = 2,2′-bipyridine) or a tetradentate ligand (cyclam = 1,4,8,11-tetraazacycloteradecane) of the composition [Ni(BzMetdtc)(phen)2]ClO4 (1), [Ni(Pe2dtc)(phen)2]ClO4 (2), [Ni(Bzppzdtc)(phen)2]ClO4 · CHCl3 (3), [Ni(Bzppzdtc)(phen)2](SCN) (4), [Ni(BzMetdtc)(bpy)2]ClO4 · 2H2O (5), [Ni(Pe2dtc)(cyclam)]ClO4 (6), [Ni(BzMetdtc)2(cyclam)] (7), [Ni(Bz2dtc)2(cyclam)] (8) and [Ni(Bz2dtc)2(phen)] (9) (BzMetdtc = N,N-benzyl-methyldithiocarbamate(1-) anion, Pe2dtc = N,N-dipentyldithiocarbamate(1-) anion, Bz2dtc = N,N-dibenzyldithiocarbamate(1-) anion, Bzppzdtc = 4-benzylpiperazinedithiocarbamate(1-) anion), have been synthesized. Spectroscopic (electronic and infrared), magnetic moment and molar conductivity data, and thermal behaviour of the complexes are discussed. Single crystal X-ray analysis of 3 and 8 confirmed a distorted octahedral arrangement in the vicinity of the nickel atom with a N4S2 donor set. They represent the first X-ray structures of such type complexes. The catalytic influence of complexes 2, 3, 6, and 7 on graphite oxidation was studied and discussed.  相似文献   

12.
The synthesis and properties of heterobimetallic Ti-M complexes of type {[[Ti](μ-η12-CCSiMe3)][M(μ-η12-CCSiMe3)(CO)4]} (M = Mo: 5, [Ti] = (η5-C5H5)2Ti; 6, [Ti] = (η5-C5H4SiMe3)2Ti; M = W: 7, [Ti] = (η5-C5H5)2Ti; 8, [Ti] = (η5-C5H4SiMe3)2Ti) and {[Ti](μ-η12-CCSiMe3)2}MO2 (M = Mo: 13, [Ti] = (η5-C5H5)2Ti; 14, [Ti] = (η5-C5H4SiMe3)2Ti). M = W: 15, [Ti] = (η5-C5H5)2Ti; 16, [Ti] = (η5-C5H4SiMe3)2Ti) are reported. Compounds 5-8 were accessible by treatment of [Ti](CCSiMe3)2 (1, [Ti] = (η5-C5H5)2Ti; 2, [Ti] = (η5-C5H4SiMe3)2Ti) with [M(CO)5(thf)] (3, M = Mo; 4, M = W) or [M(CO)4(nbd)] (9, M = Mo; 10, M = W; nbd = bicyclo[2.2.1]hepta-2,5-diene), while 13-16 could be obtained either by the subsequent reaction of 1 and 2 with [M(CO)3(MeCN)3] (11, M = Mo; 12, M = W) and oxygen, or directly by oxidation of 5-8 with air. A mechanism for the formation of 5-8 is postulated based on the in-situ generation of [Ti](CCSiMe3)((η2-CCSiMe3)M(CO)5), {[Ti](μ-η12-CCSiMe3)2}-M(CO)4, and [Ti](μ-η12-CCSiMe3)((μ-CCSiMe3)M(CO)4) as a result of the chelating effect exerted by the bis(alkynyl) titanocene fragment and the steric constraints imposed by the M(CO)4 entity.The molecular structure of 5 in the solid state were determined by single crystal X-ray diffraction analysis. In doubly alkynyl-bridged 5 the alkynides are bridging the metals Ti and Mo as a σ-donor to one metal and as a π-donor to the other with the [Ti](CCSiMe3)2Mo core being planar.  相似文献   

13.
The C,N-(trimethylsilyliminodiphenylphosphoranyl)silylmethylmetal complexes [Fe(L)2] (3), [Co(L)2] (4), [ZrCl3(L)]·0.83CH2Cl2 (5), [Fe(L)3] (6), [Fe(L′)2] (7) and [Co(L′)2] (8) have been prepared from the lithium compound Li[CH(SiMe2R)P(Ph)2NSiMe3] [1a, (R = Me) {≡ Li(L)}; 1b, (R = NEt2) {≡ Li(L′)}] and the appropriate metal chloride (or for 7, FeCl3). From Li[N(SiMe3)C(Ph)C(H)P(Ph)2NSiMe3] [≡ Li(L″)] (2), prepared in situ from Li(L) (1a) and PhCN, and CoCl2 there was obtained bis(3-trimethylsilylimino- diphenylphosphoranyl-2-phenyl-N-trimethylsilyl-1-azaallyl-N,N)cobalt(II) (9). These crystalline complexes 3-9 were characterised by their mass spectra, microanalyses, high spin magnetic moments (not 5) and for 5 multinuclear NMR solution spectra. The X-ray structure of 3 showed it to be a pseudotetrahedral bis(chelate), the iron atom at the spiro junction.  相似文献   

14.
[Cp2Ln(μ-OH)(THF)]2 react with 2 equiv of CyNCNCy (Cy = cyclohexyl) to form [Cp2Ln(μ-OC(NHCy)NCy)]2 (Ln = Er (1-Er), Y (1-Y)), while treatment of [Cp2Ln(μ-OH)]23-O)LnCp(THF) with CyNCNCy affords the addition/rearrangement products [Cp2Ln(μ3-O)(μ-OC(NHCy)NCy)LnCp]2 (Ln = Yb (3-Yb), Er (3-Er)). Compounds [(Cp2Ln)23-CO3)(THF)]2 (Ln = Yb (4-Yb), Er (4-Er)) can be obtained by treatment of [Cp2Ln(μ-OH)(THF)]2 with CO2 immediately followed by the reaction with the corresponding Cp3Ln. Complexes 1-4 were characterized by elemental analysis, spectroscopic properties and X-ray single crystal diffraction analysis.  相似文献   

15.
Diorganodiselenide [2-(Et2NCH2)C6H4]2Se2 (1) was obtained by hydrolysis/oxidation of the corresponding [2-(Et2NCH2)C6H4]SeLi derivative. The treatment of [2-(Et2NCH2)C6H4]2Se2 with elemental sodium in THF resulted in [2-(Et2NCH2)C6H4]SeNa (2). Reactions between alkali metal selenolates [2-(R2NCH2)C6H4]SeM′ (R = Me, Et; M′ = Li, Na) and MCl2 (M = Zn, Cd) in a 2:1 molar ratio resulted in the [2-(R2NCH2)C6H4Se]2M species [R = Me, M = Zn (3), Cd (4); R = Et, M = Zn (5), Cd (6)]. The new compounds were characterized by multinuclear NMR (1H, 13C, 77Se, 113Cd) and mass spectrometry. The crystal and molecular structures of 1, 3 and 4 revealed monomeric species stabilized by N → Se (for 1) and N → M (for 3 and 4) intramolecular interactions.  相似文献   

16.
TeX4 (X = Cl, Br) react in HCl/HBr with [Ph(CH3)2Te]X (X = Cl, Br) to give [PhTe(CH3)2]2[TeCl6] (1) and [PhTe(CH3)2]2[TeBr6] (2). The reaction of PhTeX3 (X = Cl, Br, I) in cooled methanol with [(Ph)3Te]X (X = Cl, Br, I) leads to [Ph3Te][PhTeCl4] (3), [Ph3Te][PhTeBr4] (4) and [Ph3Te][PhTeI4] (5). In the lattices of the telluronium tellurolate salts 1 and 2, octahedral TeCl6 and TeBr6 dianions are linked by telluronium cations through Te?Cl and Te?Br secondary bonds, attaining bidimensional (1) and three-dimensional (2) assemblies. The complexes 3, 4 and 5 show two kinds of Te?halogen secondary interactions: the anion-anion interactions, which form centrosymmetric dimers, and two identical sets of three telluronium-tellurolate interactions, which accomplish the centrosymmetric fundamental moiety of the supramolecular arrays of the three compounds, with the tellurium atoms attaining distorted octahedral geometries. Also phenyl C-H?halogen secondary interactions are structure forming forces in the crystalline structures of compounds 3, 4 and 5.  相似文献   

17.
Reaction of [2,6-(MeOCH2)2C6H3]Li (1) with SbCl3 in 1:1 molar ratio yielded except the intended product [2,6-(MeOCH2)2C6H3]SbCl2 (2) unexpected complex 3 consisting of antimony anion [Sb6Cl22]4− compensated by four intramolecularly coordinated organoantimony cations [2,6-(MeOCH2)2C6H3]2Sb+. Compound 3 is labile in CH2Cl2(CHCl3) solution and decomposes to compound 2 and SbCl3. Both compounds were characterized by the help of 1H and 13C NMR spectroscopy, ESI-mass spectrometry and in the case of 3 by single crystal X-ray diffraction techniques.  相似文献   

18.
The reaction of the labile compound [Re2(CO)8(CH3CN)2] with 2,3-bis(2-pyridyl)pyrazine in dichloromethane solution at reflux temperature afforded the structural dirhenium isomers [Re2(CO)8(C14H10N4)] (1 and 2), and the complex [Re2(CO)8(C14H10N4)Re2(CO)8] (3). In 1, the ligand is σ,σ′-N,N′-coordinated to a Re(CO)3 fragment through pyridine and pyrazine to form a five-membered chelate ring. A seven-membered ring is obtained for isomer 2 by N-coordination of the 2-pyridyl groups while the pyrazine ring remains uncoordinated. For 2, isomers 2a and 2b are found in a dynamic equilibrium ratio [2a]/[2b]  =  7 in solution, detected by 1H NMR (−50 °C, CD3COCD3), coalescence being observed above room temperature. The ligand in 3 behaves as an 8e-donor bridge bonding two Re(CO)3 fragments through two (σ,σ′-N,N′) interactions. When the reaction was carried out in refluxing tetrahydrofuran, complex [Re2(CO)6(C14H10N4)2] (4) was obtained in addition to compounds 1-3. The dinuclear rhenium derivative 4 contains two units of the organic ligand σ,σ′-N,N′-coordinated in a chelate form to each rhenium core. The X-ray crystal structures for 1 and 3 are reported.  相似文献   

19.
Reactions of [Pt2(μ-Cl)2(C8H12OMe)2] (1) (C8H12OMe = 8-methoxy-cyclooct-4-ene-1-yl) with various anionic chalcogenolate ligands have been investigated. The reaction of 1 with Pb(Spy)2 (HSpy = pyridine-2-thiol) yielded a binuclear complex [Pt2(Spy)2(C8H12OMe)2] (2). A trinuclear complex [Pt3(Spy)4(C8H12OMe)2] (3) was isolated by a reaction between 2 and [Pt(Spy)2]n. The reaction of 1 with HSpy in the presence of NaOMe generated 2 and its demethylated oxo-bridged tetranuclear complex [Pt4(Spy)4(C8H12-O-C8H12)2] (4). Treatment of 1 with ammonium diisopropyldithiophosphate completely replaced C8H12OMe resulting in [Pt(S2P{OPri}2)2] (5), whereas non-rigid 5-membered chelating ligand, Me2NCH2CH2E, produced mononuclear complexes [Pt(ECH2CH2NMe2)(C8H12OMe)] (E = S (6), Se (7)). These complexes have been characterized by elemental analyses, NMR (1H, 13C{1H}, 195Pt{1H}) and absorption spectroscopy. Molecular structures of 2, 3, 4, 5 and 7 were established by single crystal X-ray diffraction analyses. Thermolysis of 2, 6 and 7 in HDA gave platinum nanoparticles.  相似文献   

20.
The iron dithiolene compounds [Fe2(mnt)4]2− [1]2− and [Fe(NO)(mnt)2]n (n = 1−, [2]1−; n = 2−, [2]2−) ([mnt]2− = maleonitriledithiolate = [(NC)2C2S2]2−) have been characterized structurally by X-ray diffraction as their [Et4N]+ salts at 100 K. Dianion [2]2− is prepared from [2]1− by reduction with Na[Et3BH] and is observed to have a bent Fe-NO angle at 149.9(5)° in contrast to the linear configuration of Fe-NO in [2]1− (180.0°). The change from linear to bent binding mode for NO, an increase of more than 0.1 Å in the Fe-N bond length, and the relative invariance of the Fe-S distances for [2]2− versus [2]1− indicate that the NO ligand is the site of reduction. The [Et3NH]+ complex of [2]1− was also identified by crystallography and found to have hydrogen bonding contacts between [Et3NH]+ and the cyano nitrogen atom of an [mnt]2− ligand. Furthermore, relatively close S?S contacts (3.602-3.615 Å) occur between [2]1− anions, which pack together in an offset, head-to-head fashion. These S?S contacts are absent in the structure of [Et4N][2]. Infrared spectra show an energy decrease for, and a significant broadening of, the NO bond stretching absorption peak in [2]2−, which is consistent with a bent NO ligand sampling a range of conformations both by facile pivoting about the Fe-N axis and by a breathing of the Fe-NO angle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号