首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
This paper presents new protocols enabling preparation of W1/O/W2 double emulsions: one, using soybean oil as the O phase, that yields edible emulsions with industrial applications, and a second that yields emulsions with a previously unattainable concentration 15% (w/w) of surfactants in the external phase (the 15% target was chosen to meet the typical industry standard). Preparation of a stable W1/O emulsion was found to be critical for the stability of the system as a whole. Of the various low HLB primary surfactants tested, only cethyl dimethicone copolyol (Abil EM90), A-B-A block copolymer (Arlacel P135), and polyglycerol ester of ricinoleic acid (Grinstead PGR-90) yielded a stable W/O emulsion. Investigation of the surface properties of those surfactants using the monolayer technique found two significant similarities: (1) stable, compressible, and reversibly expandable monolayers; and (2) high elasticity and surface potential. The high degree of elasticity of the interfacial film between W1 and O makes it highly resilient under stress; its failure to break contributes to the stability of the emulsion. The high surface potential values observed suggest that the surfactant molecules lie flat at the O/W interfaces. In particular, in the case of PGR-90, the hydroxyl (-OH) groups on the fatty acid chains serve as anchors at the O/W interfaces and are responsible for the high surface potential. The long-term stability of the double emulsion requires a balance between the Laplace and osmotic pressures (between W1 droplets in O and between W1 droplets and the external aqueous phase W2). The presence of a thickener in the outer phase is necessary in order to reach a viscosity ratio (preferably approximately 1) between the W1/O and W2 phases, allowing dispersion of the viscous primary emulsion into the W2 aqueous phase. The thickener, which also serves as a dispersant and consequently prevents phase separation due to its thixotropic properties, must be compatible with the surfactants. Finally, the interactions between the low and high HLB emulsifiers at the O/W2 interface should not destabilize the films. It was observed that such destructive interaction for the system could be prevented by the use of two high HLB surfactants in the outer aqueous phase: an amphoteric surfactant, Betaine, and an anionic surfactant, sodium lauryl ether sulfate. The combination of such pairs of surfactants was found to contribute to the films' stability.  相似文献   

3.
Influence of interfacial rheology on foam and emulsion properties   总被引:4,自引:0,他引:4  
Foams and emulsions are stabilized by surfactant monolayers that adsorb at the air-water and oil-water interfaces, respectively. As a result of monolayer adsorption, the interfaces become viscoelastic. We will describe experiments showing that foaming, emulsification, foam and emulsion stability, are strongly dependent upon the value of compression elasticity and viscosity. This will include excited surface wave devices for the measurement of surface viscoelasticity and thin film videointerferometry for the study of model films between air bubbles and emulsion drops.  相似文献   

4.
Stabilization of oil-in-water emulsion films from PEO-PPO-PEO triblock copolymers is described in terms of interaction surface forces. Results on emulsion films from four Pluronic surfactants, namely F108, F68, P104 and P65 obtained with the Thin Film Pressure Balance Technique are summarized. It is found that film stabilization is due to DLVO (electrostatic) and non-DLVO (steric in origin) repulsive forces. The charging of the oil/water film interfaces is related to preferential adsorption of OH(-) ions. This is confirmed by pH-dependent measurements of the equivalent film thickness (h(w)) at both constant capillary pressure and ionic strength. With reducing pH in the acidic region, a critical value (pH(cr,st)) corresponding to an isoelectric state of the oil/water film surfaces is found where the electrostatic interaction in the films is eliminated. At pH≤pH(cr,st), the emulsion films are stabilized only by steric forces due to interaction between the polymer adsorption layers. Disjoining pressure (Π) isotherms measured for emulsion films from all the four Pluronic surfactants used at pH相似文献   

5.
The forces acting between nonpolar surfaces coated with the nonionic surfactant n-dodecyl-beta-D-maltoside (beta-C(12)G(2)) were investigated at concentrations below and above the critical micelle concentration. The long-range and adhesive forces were measured with a bimorph surface force apparatus (MASIF). It was found that the effect of hydrodynamic interactions had to be taken into account for an accurate determination of the short-range static interactions. The results were compared with disjoining pressure versus thickness curves that were obtained earlier with a thin film pressure balance (TFPB). This comparison led to the conclusion that the charges observed at the air-water interface are not due to charged species present in the surfactant sample. In addition, it was observed that the stability of thin liquid films crucially depends on the surfactant's bulk concentration (c) and thus on the packing density in the adsorbed layer. The force barrier preventing removal of the surfactant layer from between two solid-liquid interfaces increases with increasing c, while for foam films it is the stability of the Newton black film that increases with c. Finally, the results obtained for beta-C(12)G(2) were compared with those obtained for the homologue n-decyl-beta-d-maltoside (beta-C(10)G(2)) as well as with those obtained for nonionic surfactants with polyoxyethylene moieties as polar groups.  相似文献   

6.
This review explores three (A, B, C) polyoxyalkylated diethylenetriamine (DETA) polymeric surfactants belonging to the group of star-like polymers. They have a similar structure, differing only in the number of polymeric branches (4, 6 and 9 in the mentioned order). The differences in these surfactants' ability to stabilize foam, o/w/o and w/o/w emulsion and wetting films are evaluated by a number of methods summarized in Section 2. Results from the studies indicate that differences in polymeric surfactants' molecular structure affect the properties exhibited at air/water, oil/water and water/solid interfaces, such as the value of surface tension, interfacial tension, critical micelle concentration, degree of hydrophobicity of solid surface, etc. Foam, emulsion and wetting films stabilized by such surfactants also show different behavior regarding some specific parameters, such as critical electrolyte concentration, surfactant concentration for obtaining a stable film, film thickness value, etc. These observations give reasons to believe that model studies can support a comprehensive understanding of how the change in polymeric surfactant structure can impact thin liquid films properties. This may enable a targeted design of the macromolecular architecture depending on the polymeric surfactants application purpose.  相似文献   

7.
We have used dissipative particle dynamics to simulate amphiphilic monolayers on the interface between oil and water. An ultralow interfacial tension is imposed by means of Monte Carlo to resemble the amphiphilic films that separate oil and water regions in microemulsions. We calculate the bending modulus by analyzing the undulation spectrum. By varying the surfactant chain length and topology we investigate the effect of surfactant structure and composition of the monolayer on the bending moduli. We find that increasing the thickness has a larger effect than increasing the density of the layer. This follows from the observations that at a given interfacial tension, the bending modulus increases with chain length and is larger for linear than branched surfactants. The increase with chain length is approximately linear, which is slower than the theoretical predictions at a fixed area. We also investigated a binary mixture of short and long surfactants compared to pure layers of the same average chain length. We find a roughly linear decrease in bending modulus with mole fraction of short surfactants. Furthermore, the mixed film has a lower bending modulus than the corresponding pure film for all mole fractions. Linking the bending moduli to the structure of the surfactants is an important step in predicting the stability of microemulsions.  相似文献   

8.
The distribution of proteins and surfactants at fluid interfaces (air–water and oil–water) is determined by the competitive adsorption between the two types of emulsifiers and by the nature of the protein–surfactant interactions, both at the interface and in the bulk phase, with a pronounced impact on the interfacial rheological properties of these systems. Therefore, the interfacial rheology is of practical importance for food dispersion (emulsion or foam) formulation, texture, and stability. In this review, the existence of protein–surfactant interactions, the mechanical behaviour and/or the composition of emulsifiers at the interface are indirectly determined by interfacial rheology of the mixed films. The effect on the interfacial rheology of protein–surfactant mixed films of the protein, the surfactant, the interface and bulk compositions, the method of formation of the interfacial film, the interactions between film forming components, and the displacement of protein by surfactant have been analysed. The last section tries to understand the role of interfacial rheology of protein–surfactant mixed films on food dispersion formation and stability. The emphasis of the present review is on the interfacial dilatational rheology.  相似文献   

9.
The spreading of a partially wetting aqueous drop in air on a hydrophobic surface can be facilitated by the adsorption of surfactants from the drop phase onto the air/aqueous and aqueous/hydrophobic solid interfaces of the drop. At the contact line at which these interfaces meet, conventional surfactants with a linear alkyl hydrophobic chain attached to a polar group adsorb onto the surfaces, forming monolayers which remain distinct as they merge at the contact juncture. The adsorption causes a decrease in the interfacial tensions and reduction in the contact angle but the angle remains above zero so the drop is still nonwetting. Trisiloxane surfactants with a T-shaped geometry in which the hydrophobic group is composed of a trisiloxane oligomer with a polar group attached at the center of the chain can give rise to a zero contact angle at the contact line and complete wetting (superspreading). Experimental evidence suggests the adsorption of the T-shaped molecule, in addition to significantly decreasing the tensions of the interfaces (relative to the conventional surfactants), promotes the formation of a precursor film consisting of a surfactant bilayer at the contact line which facilitates the spreading. The aim of this study is to use molecular dynamics to examine if the T-shaped structure can promote spreading by the formation of a bilayer and to contrast this case with that of the linear chain surfactant where complex assembly does not occur. The simulation models the solvent as a monatomic liquid, the substrate as a particle lattice, and the surfactants as united atom structures, with all interactions given by Lennard-Jones potentials. We start with a base case in which the solvent partially wets a substrate comprised of a lattice of particles. We demonstrate that adsorbed T-shaped surfactant monolayers can, when the interaction between the solvent and the hydrophile particles is strong enough, assemble into a bilayer, allowing the drop to extend to a thin planar film. In the case of the flexible linear chain surfactant, there is no interaction between the monolayers on the two interfaces in the case of a strong hydrophile-solvent interaction and less coordination for a weaker interaction. In either case, the monolayers remain distinct, as the surfactant only marginally improves wetting.  相似文献   

10.
11.
Confinement-induced symmetry breaking of interfacial surfactant layers   总被引:2,自引:0,他引:2  
Interaction forces between mesoscopic objects are fundamental to soft-condensed matter and are among the prime targets of investigation in colloidal systems. Surfactant molecules are often used to tailor these interactions. The forces are experimentally accessible and for a first theoretical analysis one can make use of a parallel-plate geometry. We present molecularly realistic self-consistent field calculations for an aqueous nonionic surfactant solution near the critical micellization concentration, in contact with two hydrophobic surfaces. The surfactants adsorb cooperatively, and form a monolayer onto each surface. At weak overlap the force increases with increasing compression of the monolayers until suddenly a symmetry braking takes place. One of the monolayers is removed jump-like and as the remaining monolayer can relax, some attraction is observed, which gives way to repulsion at further confinement. The restoring of symmetry at strong confinement occurs as a second-order transition and the force jumps once again from repulsion to attraction. It is anticipated that the metastable branch of the interaction curve will be probed in a typical force experiment. Under normal conditions pronounced hysteresis in the surface force is predicted, without the need to change the adsorbed amount jump-like.  相似文献   

12.
The deformation, drainage, and rupture of an axisymmetrical film between colliding drops in the presence of insoluble surfactants under the influence of van der Waals forces is studied numerically at small capillary and Reynolds numbers and small surfactant concentrations. Constant-force collisions of Newtonian drops in another Newtonian fluid are considered. The mathematical model is based on the lubrication equations in the gap between drops and the creeping flow approximation of Navier–Stokes equations in the drops, coupled with velocity and stress boundary conditions at the interfaces. A nonuniform surfactant concentration on the interfaces, governed by a convection–diffusion equation, leads to a gradient of the interfacial tension which in turn leads to additional tangential stress on the interfaces (Marangoni effects). The mathematical problem is solved by a finite-difference method on a nonuniform mesh at the interfaces and a boundary-integral method in the drops. The whole range of the dispersed to continuous-phase viscosity ratios is investigated for a range of values of the dimensionless surfactant concentration, Peclét number, and dimensionless Hamaker constant (covering both “nose” and “rim” rupture). In the limit of the large Peclét number and the small dimensionless Hamaker constant (characteristic of drops in the millimeter size range) a fair approximation to the results is provided by a simple expression for the critical surfactant concentration, drainage being virtually uninfluenced by the surfactant for concentrations below the critical surfactant concentration and corresponding to that for immobile interfaces for concentrations above it.  相似文献   

13.
The microscopic thin wetting film method was used to study the stability of wetting films from aqueous solution of surfactants and phospholipid dispersions on a solid surface. In the case of tetradecyltrimethylammonium bromide (C(14)TAB) films the experimental data for the receding contact angle, film lifetime, surface potential at the vapor/solution and solution/silica interface were used to analyze the stability of the studied films. It is shown that with increasing C(14)TAB concentration charge reversal occurs at both (vapor/solution and solution/silica) interfaces, which affects the thin-film stability. The spontaneous rupture of the thin aqueous film was interpreted in terms of the earlier proposed heterocoagulation mechanism. The presence of the mixed cationic/anionic surfactants was found to lower contact angles and suppresses the thin aqueous film rupture, thus inducing longer film lifetime, as compared to the pure amine system. In the case of mixed surfactants hetero-coagulation could arise through the formation of ionic surfactant complexes. The influence of the melting phase-transition temperature T(c) of the dimyristoylphosphatiddylcholine (DMPC) on the stability of thin films from dispersions of DMPC small unilamellar vesicles on a silica surface was studied by measuring the film lifetime and the TPC expansion rate. The stability of thin wetting films formed from dispersions of DMPC small unilamellar vesicles was investigated by the microinterferometric method. The formation of wetting films from diluted dispersions of DMPC multilamellar vesicles was studied in the temperature range 25-32 degrees C. The stability of thin film of lipid vesicles was explained on the basis of hydrophobic interactions. The results obtained show that the stability of wetting films from aqueous solutions of single cationic and mixed cationic-anionic surfactants has electrostatic origin, whereas the stability of the phospholipid film is due to hydrophobic interaction.  相似文献   

14.
A variety of single-chain surfactants with different charge properties and tail lengths can spontaneously adsorb on the hydrophobic surface of carbon paste electrode and form stable monolayers on the electrode surface. Hemoglobin (Hb) was successfully immobilized on these surfactant monolayers to form stable protein-surfactant composite films regardless of the charge and the tail length of surfactants. The resulting surface-confined Hb exhibited well-defined direct electron-transfer behaviors in all positively, neutrally and negatively charged surfactant films, suggesting the important role of hydrophobic interactions in the adsorption of Hb on surfactant films. When the density of surfactant monolayers was controlled to be the same, Hb was found to possess a better direct electron-transfer behavior on monolayers of cationic surfactants with a longer tail length. This, in combination with the tunneling effect in the direct electron transfer of Hb on surfactant films, demonstrated that the adsorption of Hb on surfactant monolayers may be mainly achieved by the partial intercalation of Hb in the loose structures of surfactant films through hydrophobic interactions between the alkane chains of surfactants and the hydrophobic regions of Hb. The native conformation of Hb adsorbed on these surfactant films was proved to be unchanged, reflected by the unaltered ultraviolet-visible (UV-vis) and reflection-absorption infrared (RAIR) spectra, and by the catalytic activity toward hydrogen peroxide (H(2)O(2)) and nitric oxide (NO) in comparison with the free Hb molecules.  相似文献   

15.
The behaviour of oils at aqueous interfaces is ubiquitous to many industrially and biologically relevant processes. In this review we consider modifications to the wetting properties of oils at the air/water, oil/water and solid/liquid interfaces in the presence of surfactants. First-order wetting transitions can be induced in a wide range of oils by varying the aqueous surfactant concentration, leading to the formation of mixed monolayers at the interface. In certain cases, these mixed monolayers display novel surface freezing behaviour, including the formation of unusual bilayer structures, which further modifies the properties of the interface. The effects of surfactant on line tension at the three-phase contact line and differences between the air/liquid and liquid/liquid interfaces are discussed.  相似文献   

16.
The designed polyurethane surfactant (PUS) was used as a macromolecular surfactant for the preparation of polyacrylate emulsion without any other surfactants and stabilizers. The resultant polymer emulsion and film properties were compared with those of the emulsion prepared with sodium dodecyl sulfate (SDS). Long shelf-life of the polymer emulsion can be achieved at proper composition. Polymer particles show core-shell and nano-scale structure with narrow distribution. Thermoanalysis results show phase separation in the polymer film, which leads to gloss decrease with the PUS content increase. Such polymer films show good water resistance and mechanical strength.  相似文献   

17.
Rupture of wetting films caused by nanobubbles   总被引:6,自引:0,他引:6  
It is now widely accepted that nanometer sized bubbles, attached at a hydrophobic silica surface, can cause rupture of aqueous wetting films due to the so-called nucleation mechanism. But the knowledge of the existence of such nanobubbles does not give an answer to how the subprocesses of this rupture mechanism operate. The aim of this paper is to describe the steps of the rupture process in detail: (1) During drainage of the wetting film, the apex of the largest nanobubble comes to a distance from the wetting film surface, where surface forces are acting. (2) An aqueous "foam film" in nanoscale size is formed between the bubble and the wetting film surface; in this foam film different Derjaguin-Landau-Verwey-Overbeek (DLVO) forces are acting than in the surrounding wetting film. In the investigated system, hydrophobized silica/water/air, all DLVO forces in the wetting film are repulsive, whereas in the foam film the van der Waals force becomes attractive. (3) The surface forces over and around the apex of the nanobubble lead to a deformation of the film surfaces, which causes an additional capillary pressure in the foam film. An analysis of the pressure balance in the system shows that this additional capillary pressure can destabilize the foam film and leads to rupture of the foam film. (4) If the newly formed hole in the wetting film has a sufficient diameter, the whole wetting film is destabilized and the solid becomes dewetted. Experimental data of rupture thickness and lifetime of wetting films of pure electrolyte and surfactant solutions show that the stabilization of the foam film by surfactants has a crucial effect on the stability of the wetting film.  相似文献   

18.
Surfactant distributions in model pressure-sensitive adhesive (PSA) films were investigated using atomic force microscopy (AFM) and confocal Raman microscopy (CRM). The PSAs are water-based acrylics synthesized with n-butyl acrylate, vinyl acetate, and methacrylic acid and two commercially available surfactants, disodium (nonylphenoxypolyethoxy)ethyl sulfosuccinate (anionic) and nonylphenoxypoly(ethyleneoxy) ethanol (nonionic). The ratio of these surfactants was varied, while the total surfactant content was held constant. AFM images demonstrate the tendency of anionic surfactant to accumulate at the film surfaces and retard latex particle coalescence. CRM, which was introduced here as a means of providing quantitative depth profiling of surfactant concentration in latex adhesive films, confirms that the anionic surfactant tends to migrate to the film interfaces. This is consistent with its greater water solubility, which causes it to be transported by convective flow during the film coalescence process. The behavior of the nonionic surfactant is consistent with its greater compatibility with the polymer, showing little enrichment at film interfaces and little lateral variability in concentration measurements made via CRM. Surfactant distributions near film interfaces determined via CRM are well fit by an exponential decay model, in which concentrations drop from their highs at interfaces to plateau values in the film bulk. It was observed that decay constants are larger at the film-air interface compared with those obtained at the film-substrate side indicating differences in the mechanism involved. In general, it is shown here that CRM acts as a powerful compliment to AFM in characterizing the distribution of surfactant species in PSA film formation.  相似文献   

19.
Major recent advances include the development of new experimental techniques that enabled the first precise measurements of interfacial widths at water–oil interfaces and of the ordering of surfactants adsorbed to these interfaces, studies of phase transitions and domain formation in surfactant monolayers, and studies of interfacial fluctuations confined by and coupled across thin liquid films.  相似文献   

20.
Pulmonary lung surfactant is a mixture of surfactants that reduces surface tension during respiration. Perfluorinated surfactants have potential applications for artificial lung surfactant formulations, but the interactions that exist between these compounds and phospholipids in surfactant monolayer mixtures are poorly understood. We report here, for the first time, a detailed thermodynamic and structural characterization of a minimal pulmonary lung surfactant model system that is based on a ternary phospholipid-perfluorocarbon mixture. Langmuir and Langmuir-Blodgett monolayers of binary and ternary mixtures of the surfactants 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-dipalmitoyl-sn-glycero-3-phosphoglycerol (DPPG) and perfluorooctadecanoic acid (C18F) have been studied in terms of miscibility, elasticity and film structure. The extent of surfactant miscibility and elasticity has been evaluated via Gibbs excess free energies of mixing and isothermal compressibilities. Film structure has been studied by a combination of atomic force microscopy and fluorescence microscopy. Combined thermodynamic and microscopy data indicate that the ternary monolayer films were fully miscible, with the mixed films being more stable than their pure individual components alone, and that film compressibility is minimally improved by the addition of perfluorocarbons to the phospholipids. The importance of these results is discussed in context of these mixtures' potential applications in pulmonary lung surfactant formulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号