首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This work is devoted to the synthesis and stabilization of magnetorheological suspensions constituted by monodisperse micrometer-sized magnetite spheres in aqueous media. The electrical double-layer characteristics of the solid/liquid interface were studied in the absence and presence of adsorbed layers of high molecular weight polyacrylic acids (PAA; Carbopol). Since the Carbopol-covered particles can be thought of as "soft" colloids, Ohshima's theory was used to gain information of the surface potential and the charge density of the polymer layer. The effect of the pH of the solution on the double-layer characteristics is related to the different conformations of the adsorbed molecules provoked by the dissociation of the acrylic groups present in polymer molecules. The stability of the suspensions was experimentally studied for different pH and polymer concentrations, and in the absence or presence of a weak magnetic field applied. The stability of the suspensions was explained using the classical DLVO theory of colloidal stability extended to account for hydration, steric, and magnetic interactions between particles. Diagrams of potential energy vs interparticle distance show the predominant effect of steric, hydrophilic/hydrophobic, and magnetic interactions on the whole stability of the system. The best conditions to obtain stable suspensions were found when strong steric and hydrophilic repulsions hinder the coagulation between polymer-covered particles, simultaneously avoiding sedimentation by the thickening effect of the polymer solution. When a not too high molecular weight PAA was employed in a low concentration, the task of a long-time antisettling effect compatible with the desired magnetic response of the fluid was achieved.  相似文献   

2.
In this work, we describe an experimental investigation on the colloidal stability of suspensions of three kinds of particles, including magnetite, poly(lactic acid) (PLA), and composite core/shell colloids formed by a magnetite core surrounded by a PLA shell. The experiments were performed with dilute suspensions, so that recording the optical absorbance with time gives a suitable indication of the aggregation and sedimentation of the suspensions. The method allowed us to distinguish very accurately between the different surface and magnetic forces responsible for the structures acquired by particle aggregates. Thus, the pure PLA suspensions are very sensitive to ionic strength and almost unaffected by pH changes. On the contrary, the stability of magnetite systems is mainly controlled by pH. The effect of vertical magnetic fields on the stability of magnetite and magnetite/PLA suspensions is also investigated. The PLA shell reduces the magnetic responsiveness of magnetite, but it is demonstrated that the mixed particles can also form structures induced by the field, despite their lower magnetization, and they can be considered in magnetically targeted biomedical applications.  相似文献   

3.
Ammonium polyacrylate (NH4PAA) stabilized yttria-doped (3 mol%) tetragonal zirconia (Y-TZP) aqueous suspensions were prepared. Surface chemistry of the suspension was investigated by a variety of techniques. Isotherm adsorption of dispersants on ZrO2 particles demonstrated an optimum coverage of 0.25 mg/g at pH 10. The isoelectric point (IEP) of ZrO2 suspensions was shifted to low pH regions with the presence of NH4PAA. Scanning auger microscopy (SAM) and FTIR and UV spectrophotometry were employed to determine the surface properties of ZrO2 suspensions, which confirmed that the surface Zr-O bonds were affected by the adsorbed polymers. Atomic force microscopy (AFM) analysis indicated that the interactions between particles were evidently influenced by polymer dispersants. Copyright 1999 Academic Press.  相似文献   

4.
Associating polymers which consist of water-soluble long-chain molecules containing a small fraction of hydrophobic groups (hydrophobes) behave as flocculants in aqueous suspensions. The effects of associating polymers on the rheological behavior are studied for single suspensions of particles with hydrophilic and hydrophobic surfaces, and their mixtures. For particles with hydrophilic surfaces, the suspensions are highly flocculated by a bridging mechanism, because the water-soluble chains adsorb onto hydrophilic surfaces. On the other hand, the particles with hydrophobic surfaces cannot be dispersed in water without polymer and the additions of a small amount of polymer are required for preparation of homogeneous suspensions. The associating polymer acts as a dispersant at low concentrations. However, further additions of polymer lead to a drastic increase in viscosity. Since the hydrophobes on one end of molecules adsorb onto hydrophobic surfaces and other hydrophobes tending from the particles can form micelles, the particles are connected by linkage of interchain associations. By mixing two suspensions of particles with hydrophilic and hydrophobic surfaces, the viscosity is substantially reduced and the flow becomes nearly Newtonian. The associating polymer in complex suspensions acts as a binder between the hydrophilic and hydrophobic surfaces. The hetero-flocculation which leads to the formation of composite particles may be responsible for the viscosity reduction of complex suspensions.  相似文献   

5.
Herein, we have reviewed fumed silica suspensions in dispersing fluids, polymer melts, and polymer solutions, focusing on their dispersion stability and rheological properties as a function of the surface character of fumed silica powders and the silica volume fraction, ?. Hydrophilic fumed silica powders are well dispersed at ? < 0.01 in polar dispersing fluids or polar polymer melts, and their phase states change from sol to gel with increasing ?. Such changes should also be strongly related to the rheological responses of the hydrophilic fumed silica suspensions, which change from Newtonian flow behavior to gel-like elasticity with increasing ?. On the other hand, hydrophobic fumed silica powders are stabilized in both polar and nonpolar dispersing fluids, depending on the interactions between the surface hydrophobic moieties and the dispersing fluids, in addition to those between the residual surface silanol groups and dispersing fluid, except for the particle–particle interactions. Moreover, the effects of the adsorption and desorption of polymers, as well as of non-adsorbing polymers on the dispersion stability and rheological behavior of fumed silica suspensions are discussed, by taking account of their optical microscopic observation and SANS curves.  相似文献   

6.
Monodisperse magnetic composite particles (MCP) were prepared and characterized for a study of magnetic field-responsive fluids. Magnetic composite particles used are iron oxide-coated polymer composite particles, which were synthesized through in situ coating of iron oxide onto pre-existing polymer particles by the reduction of ferrous fluids. For a uniform and bulk coating of iron oxide, the porous structure was introduced into the substrate polymer particles through a two-step seeded polymerization method. Moreover, surface cyano-functionality was born from acrylonitrile unit of substrate polymer and it played an important role in obtaining successful uniform coating. The structure of the composite particle was analyzed by using a thermo gravimetric analysis (TGA) and a X-ray diffraction (XRD) analysis. The magnetization property of the particle was also observed. Then, the rheological properties of monodisperse magnetorheological (MR) suspensions of magnetic composite particles were examined under a magnetic field using a parallel-plate type commercial rheometer. From the rheological measurements, it was found that MR properties of the magnetic composite suspensions are dependent on the iron oxide content and the fluid composition.  相似文献   

7.
Ionic strength and pH will influence the zeta potential of suspended particles, and consequently particle interactions and rheological properties as well. In this study the rheological properties and aggregation behaviour of Aerosil particles dispersed in aqueous solutions with various pH and salt concentration were studied. The potential energy was estimated by the DLVO theory and short range hydration forces and compared to the experimentally determined zeta potential. The strongest attraction between particles occurs at the isoelectric point (pH 4) and resulted in large aggregates, which gave relatively higher values of viscosity, yield stress, moduli, and shear thinning effects. The relative viscosity as a function of volume fraction was fitted to the Krieger and Dougherty model for all the suspensions. Oscillation measurements showed that the suspensions display elastic behaviour at low pH and viscous behavior at high pH. Furthermore, suspensions with high salt content had higher storage moduli. A power law dependency of storage moduli with volume fraction could be used to indicate the interaction strength between particles.  相似文献   

8.
Fine composite powders of yttria (3 mol%) stabilized zirconia (Z, 10 wt%) and hydroxyapatite (HA), denoted as HAZ, were prepared by the co-precipitation method. The resulting powders were characterized by XRF, TEM, EDS, XRD, FTIR, TG-DTA, and BET surface area techniques. AES and FTIR were employed to determine the surface properties of the HAZ suspensions in the presence of NH4PAA as a dispersant, which confirmed that the surfaces of both HA and Z were affected by the adsorbed polymers. The mechanism of NH4PAA adsorption on the particles was discussed. Zeta potential measurements showed that the addition of NH4PAA resulted in a dramatic increase in the absolute value of zeta potential. NH4PAA considerably enhanced the stability of the HAZ suspension via electrosteric barrier mechanisms. TEM micrographs confirmed that particles were well dispersed in the suspension. The adsorption density of the dispersant was found to decrease with an increase in pH value.  相似文献   

9.
A series of polyelectrolytes with controlled molecular weight, a narrow chain-length distribution, and systematic structural differences were synthesized using atom-transfer radical polymerization and investigated as stabilizers for magnetite nanoparticles in aqueous suspensions. Structural differences include the degree of polymerization, the chain architecture, and the identity of the charged functional unit. The synthesized polymers are sulfonated poly(2-hydroxyethyl methacrylate), a block copolymer of the former with poly(n-butyl methacrylate), poly(sodium styrene sulfonate), poly(sodium acrylate), and poly(sodium vinylphosphonate). The colloidal stability is assessed by measuring the fraction of particles, based on turbidity, that sediment after a period of time at increasing ionic strength. Sedimentation results are complimented by dynamic light scattering determinations of the hydrodynamic diameter of the particles that remain suspended. When adsorption and sedimentation are conducted at high pH, poly(sodium acrylate) and poly(sodium vinylphosphonate) yield the most stable suspensions because of their strong coordinative interactions with the iron oxide surface. At low pH, the polymers that retain pendant negative charges (each of the sulfonated polymers) yield high stable fractions at all ionic strengths investigated up to 100 mM (NaCl), whereas polyelectrolytes that become protonated with decreasing pH, poly(sodium acrylate) and poly(sodium vinylphosphonate), lose their stabilizing capacity even at low ionic strengths. The chain-length distribution profoundly alters a polymer's stabilization tendencies. Two poly(sodium acrylate) samples with the same number-average molecular weight but widely different chain-length distributions proved to have opposite tendencies, with the polydisperse sample being a good stabilizer and the low polydispersity one being a strong flocculant. This investigation provides guidelines for the design of polymeric stabilizers for magnetite nanoparticles according to the pH and ionic strength of the intended application.  相似文献   

10.
In this paper, we describe an investigation of the stability and sedimentation behavior of moderately concentrated suspensions of extremely bimodal magnetite particles, including micro- (diameter 1450 nm) and nano- (diameter 8 nm) units. An original method is used, based on the determination of the time dependence of the inductance of a coil surrounding the suspensions. The method proves to be very useful for the determination of the volume fraction of magnetic material in the sensed volume. The observed changes in the resonant frequency of a parallel LC circuit demonstrate that the addition of the magnetite nanoparticles improves the stability and slows down the settling rate of the mixed suspensions. It is proposed that the observed behavior is the result of competition between two processes. One is the formation of a cloud of nanoparticles around the large magnetite units, by virtue of which the latter are maintained at distances beyond the range of DLVO and magnetic attractive interactions. At long times, these composite units will eventually sediment when some critical size is reached, as the small particles are progressively associated with the large ones. The second mechanism is mainly predominant at short times and is related to the higher viscosity of the dispersion medium (the nanoparticles dispersed in the base fluid) for higher nanoparticle concentrations. The stability of the suspensions is discussed in terms of the competition between the two mechanisms.  相似文献   

11.
The effects of a poly(acrylic acid) (PAA)-poly(ethylene) (PEO) comb polymer dispersant on the rheological properties and inter-particle forces in aqueous silica suspensions have been studied under varying pH conditions. The comb polymer was found to adsorb more strongly under acidic than basic conditions, indicating that the PAA backbone of the copolymer preferentially adsorbs onto silica surfaces with the PEO "teeth" extending out from the surface into the solution. In the presence of low concentrations of copolymer, the silica suspensions were stable due to electrostatic repulsions between the silica surfaces. At higher copolymer concentrations and under neutral and basic conditions, where the copolymer interacted only weakly with silica, the suspensions showed a transition from a dispersed to weakly flocculated state and attractive forces were measured between silica surfaces. Under acidic conditions, the silica dispersion also destabilized at intermediate copolymer adsorbed density and then was re-stabilized at higher adsorbed coverage. The silica suspensions were stable at high copolymer coverage due to steric repulsions between the particles. The destabilization at intermediate coverage is thought to be due to polymer bridging between particles or possibly depletion forces.  相似文献   

12.
This work is devoted to the preparation of magnetite-covered clay particles in aqueous medium. For this purpose, magnetite nanoparticles were synthesized by a coprecipitation method. These magnetic particles are adhered to sodium montmorillonite (NaMt) particles in aqueous suspensions of both materials, by appropriate control of the electrolyte concentrations. The best condition to produce such heteroaggregation corresponds to acid pH and approximately 1 mol/L ionic strength, when the electrokinetic potentials (zeta-potential) of both NaMt and Fe3O4 particles have high enough and opposite sign, as demonstrated from electrophoresis measurements. When a layer of magnetite re-covers the clay particles, the application of an external magnetic field induces a magnetic moment in clay-magnetite particles parallel to the external magnetic flux density. The sedimentation behavior of such magnetic particles is studied in the absence or presence of an external magnetic field in a vertical direction. The whole sedimentation behavior is also strongly affected by the formation of big flocculi in the suspensions under the action of internal colloidal interactions. van der Waals and dipole-dipole magnetic attractions between magnetite-covered clay particles dominate the flocculation processes. The different relative orientation of the clay-magnetite particles (edge-to-edge, face-to-edge, and face-to-face) are discussed in order to predict the most favored flocculi configuration.  相似文献   

13.
Sub-micron sized polystyrene particles containing magnetite more than 30 wt.% were prepared by miniemulsion polymerization with commercially available ferricolloid. The effects of some water-soluble initiators and/or oil-soluble initiators on the particles characteristics, such as the size, morphology, magnetic properties and colloidal stability, were studied. The size of monomer droplets/polymer particles increased from 60 to 300 nm during polymerization, keeping magnetic in core when potassium persulfate (KPS) or ammonium persulfate (APS) was used as the sole initiator. These particles were easily separated from the medium within short time scale in external magnetic field, while such characteristics were controlled by the amount of persulfate used for the polymerization. In contrast, when 2,2′-azobis isobutyronitrile (AIBN) was used as the initiator, the size of droplets/particles was retained to be 90 nm at the most and magnetite nanoparticles located at the surface of polystyrene particles, which were so colloidally stable that they were not separated in external magnetic field. The above-mentioned effect of initiators on particle size in persulfate system was likely originated from the decrease of pH value and the increase of ionic strength, which induced the fusion of droplets/particles containing magnetite. Mixed-initiators system resulted in intermediate characteristics, compared with each initiator system. The location of magnetite in the particle seems to depend on where initiation/polymerization occurred in each initiator system.  相似文献   

14.
Temperature responsive charged block-copolymers of poly(N-isopropylacrylamide) (PNIPAM) have been used in the solid-liquid separation of alumina mineral particles from aqueous solution. The effects of temperature, polymer charge-sign and fraction of charged segment have been investigated. Batch settling and adsorption studies showed that rapid sedimentation results for suspensions with polymers of opposite charge-sign to the particle surface-charge (counterionic) at 50 °C. Cooling the suspensions after flocculation at 50 °C was found to increase the final solids volume fraction of the sediment beds formed through a mechanism related to partial desorption of polymer and the reduction of the hydrophobic attraction. Suspension stability results after dosing with polymers of similar charge-sign to the particle surface-charge (co-ionic) at both 25 and 50 °C. Increasing the amount of polymer charge increased the influence of polymer charge-sign on the adsorption and solid-liquid separation behavior. The performance of the charged block copolymers are compared to that of the random charged copolymer and neutral homopolymer PNIPAM structures.  相似文献   

15.
The clustering and stability of magnetic nanoparticles coated with random copolymers of acrylic acid, styrenesulfonic acid, and vinylsulfonic acid has been studied. Clusters larger than 50 nm are formed when the coatings are made using too low or too high molecular weight polymers or using insufficient amounts of polymer. Low-molecular-weight polymers result in thin coatings that do not sufficiently screen van der Waals attractive forces, while high-molecular-weight polymers bridge between particles, and insufficient polymer results in bare patches on the magnetite surface. The stability of the resulting clusters is poor, but when an insufficient polymer is used as primary coating, and a secondary polymer is added to coat remaining bare magnetite, the clusters are stable in high salt concentrations (>5 M NaCl), while retaining the necessary cluster size for efficient magnetic recovery. The magnetite cores were characterized by TEM and vibrating sample magnetometry, while the clusters were characterized by dynamic light scattering. The clustering and stability are interpreted in terms of the particle-particle interaction forces, and the optimal polymer size can be predicted well on the basis of these forces and the solution structure and hydrophobicity of the polymer. The size of aggregates formed by limited polymer can be predicted with a diffusion-limited colloidal aggregation model modified with a sticking probability based on fractional coating of the magnetite cores.  相似文献   

16.
Nonspecific interactions between proteins and polymer surfaces have to be minimized in order to control the performance of biosensors based on immunoassays with particle labels. In this paper we investigate these nonspecific interactions by analyzing the response of protein coated magnetic particles to a rotating magnetic field while the particles are in nanometer vicinity to a polymer surface. We use the fraction of nonrotating (bound) particles as a probe for the interaction between the particles and the surface. As a model system, we study the interaction of myoglobin coated particles with oxidized polystyrene surfaces. We measure the interaction as a function of the ionic strength of the solution, varying the oxidation time of the polystyrene and the pH of the solution. To describe the data we propose a model in which particles bind to the polymer by crossing an energy barrier. The height of this barrier depends on the ionic strength of the solution and two interaction parameters. The fraction of nonrotating particles as a function of ionic strength shows a characteristic shape that can be explained with a normal distribution of energy barrier heights. This method to determine interaction parameters paves the way for further studies to quantify the roles of protein coated particles and polymers in their mutual nonspecific interactions in different matrixes.  相似文献   

17.
We investigate the nanostructure and the linear rheological properties of polybutylacrylate (PBA) filled with St?ber silica particles grafted with PBA chains. The silica volume fractions range from 1.8 to 4.7%. The nanostructure of these suspensions is investigated by small-angle neutron scattering (SANS), and we determine their spectromechanical behavior in the linear region. SANS measurements performed on low volume fraction composites show that the grafted silica particles are spherical, slightly polydisperse, and do not form aggregates during the synthesis process. These composites thus constitute model filled polymers. The rheological results show that introducing grafted silica particles in a polymer matrix results in the appearance of a secondary process at low frequency: for the lowest volume fractions, we observe a secondary relaxation that we attribute to the diffusion of the particles in the polymeric matrix. By increasing the silica volume fraction up to a critical value, we obtain gellike behavior at low frequency as well as the appearance of a structure factor on the scattering intensity curves obtained by SANS. Further increasing the silica particle concentration leads to composites exhibiting solidlike low-frequency behavior and to an enhanced structure peak on the SANS diagrams. This quantitative correlation between the progressive appearance of a solidlike rheological behavior, on one hand, and a structure factor, on the other hand, supports the idea that the viscoelastic behavior of filled polymers is governed by the spatial organization of the fillers in the matrix.  相似文献   

18.
Biocompatible polymer-magnetite hybrid nanoparticles were prepared by means of in situ synthesis of magnetite within polysaccharide hydrogel nanoparticles. Hydrogel nanoparticles were first fabricated by blending high-molecular-weight carboxymethyl cellulose as an anionic polymer, and low-molecular-weight chitosan as a cationic polymer to form polyion complexes (CC particles). These polyion complexes were then chemically crosslinked using genipin, a bio-based cross-linker, to form stable nanoparticles having a semi-IPN structure (CCG particles). Magnetite was lastly synthesized within CCG particles by the coprecipitation method to obtain polymer-magnetite hybrid nanoparticles (CCGM particles). The formations of CC, CCG and CCGM particles were mainly observed by transmittance, absorbance of genipin and TEM, respectively, and their hydrodynamic diameters and zeta-potentials were analyzed. It was confirmed that the hydrodynamic diameters and the zeta-potentials of these particles were significantly influenced by pH of the suspension, which was attributed to the charges of polymers. The diameters of CCGM particles were smaller than 200 nm at any pH conditions, suggesting the possibility to apply them as drug delivery carriers. CCGM particles exhibited the responsiveness to a magnetic field in addition to their high dispersion stability, indicating their potential to be utilized as a biomaterial for hyperthermia.  相似文献   

19.
A magnetic field and temperature was shown to affect disperse composition, electrophoretic behavior, and aggregation stability of synthesized magnetite particles. When synthesis proceeds, a process of the nucleation of ultramicroscopic Fe3O4 particles prevails over a process of their aggregation. Here an electrostatic factor of stability of magnetite suspension plays an important role. An application of the magnetic field decreases the aggregation stability and increases the sedimentation rate of product particles.  相似文献   

20.
The influence of anionic poly(acrylic acid) — PAA addition on the stability of synthesized silica, alumina and mixed silica-alumina suspensions as a function of solution pH was studied. The turbidimetry method was used to monitor the changes of the examined systems stability over time. The calculated stability coefficients enabled estimation of polymer adsorption influence on stability of metal oxide suspension. It was shown that the alumina suspension without the polymer is the most unstable at the pH values 6 and 9, whereas the silica polymer was most unstable at pH 3. PAA with higher molecular weight (240 000) is a relatively effective stabilizer of all investigated adsorbents (except silica at pH 3). These properties of poly(acrylic acid) are highly desirable in many branches of industry (e.g. production of cosmetics, pharmaceuticals, paints) where polymers are widely used as effective stabilizers of colloidal suspensions.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号