首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Acoustic cavitation energy distributions were investigated for various frequencies such as 35, 72, 110 and 170 kHz in a large-scale sonoreactor. The energy analyses were conducted in three-dimensions and the highest and most stable cavitation energy distribution was obtained not in 35 kHz but in 72 kHz. However, the half-cavitation-energy distance was larger in the case of 35 kHz ultrasound than in the case of 72 kHz, demonstrating that cavitation energy for one cycle was higher for a lower frequency. This discrepancy was due to the large surface area of the cavitation-energy-meter probe. In addition, 110 and 170 kHz ultrasound showed a very low and poor cavitation energy distribution. Therefore larger input power was required to optimize the use of higher frequency ultrasound in the sonoreactor with long-irradiation distance. The relationship between cavitation energy and sonochemical efficiency using potassium iodide (KI) dosimetry was best fitted quadratically. From 7.77 × 10?10 to 4.42 × 10?9 mol/J of sonochemical efficiency was evaluated for the cavitation energy from 31.76 to 103. 67 W. In addition, the cavitation energy attenuation was estimated under the assumption that cavitation energy measured in this study would be equivalent to sound intensity, resulting in 0.10, 0.18 and 2.44 m?1 of the attenuation coefficient (α) for 35, 72 and 110 kHz, respectively. Furthermore, α/(frequency)2 was not constant, as some previous studies have suggested.  相似文献   

2.
Ultrasound in the 20–1000 kHz range show unique propagation characteristics in fluid media and possess energy that can break down fruit matrices to facilitate the extraction of valuable bioactive compounds. Red raspberries carry significant amounts of specific antioxidants, including ellagitannins and anthocyanins that are important for human health. The objective of this study was to investigate the effects of ultrasound frequencies associated with cavitation (20 kHz) and microstreaming (490 and 986 kHz) on total antioxidant activity (AOA), total phenolics content (TPC), and total monomeric anthocyanin content (ACY) of red raspberry puree prepared from crushed berries. The pureed fruit was subjected to high-intensity (20 kHz) and higher frequency-low intensity (490 and 986 kHz) ultrasound for 30 min. The temperature of treated purees increased to a maximum of 56 °C with 986 kHz. Sonication at 20 and 490 kHz significantly (p < 0.05) affected the AOA, ACY, and TPC of red raspberry puree, while 986 kHz had no significant effect on ACY and AOA (p < 0.05). In all cases, ultrasound treatment had significant and positive effect on at least one of the measured parameters up to 30 min. Sonication beyond 10 min (and up to 30 min) using 20 kHz either produced no change or caused a drop in AOA and ACY. However, for 986 and 20 kHz, TPC, increased by 10% and 9.5%, respectively after 30 min (p < 0.05) compared to the control. At 20 kHz, AOA and ACY increased by 17.3% and 12.6% after 10 min. It was demonstrated that 20 kHz ultrasound treatment, when limited to 10 min, was the most effective for extraction of bioactive compounds in red raspberry compared to 490 and 986 kHz although the effect could be similar at the higher frequencies if different amplitudes are used.  相似文献   

3.
《Ultrasonics sonochemistry》2014,21(6):2084-2091
Lignocellulosic biomass samples (wheat chaff) were pretreated by ultrasound (US) (40 kHz/0.5 W cm−2/10 min and 400 kHz/0.5 W cm−2/10 min applied sequentially) prior to digestion by enzyme extracts obtained from fermentation of the biomass with white rot fungi (Phanerochaete chrysosporium or Trametes sp.). The accessibility of the cellulosic components in wheat chaff was increased, as demonstrated by the increased concentration of sugars produced by exposure to the ultrasound treatment prior to enzyme addition. Pretreatment with ultrasound increased the concentration of lignin degradation products (guaiacol and syringol) obtained from wheat chaff after enzyme addition. In vitro digestibility of wheat chaff was also enhanced by the ultrasonics pretreatment in combination with treatment with enzyme extracts. Degradation was enhanced with the use of a mixture of the enzyme extracts compared to that for a single enzyme extract.  相似文献   

4.
Ultrasound (US) has been suggested for many whey processing applications. This study examined the effects of ultrasound treatment on the oxidation of lipids in Cheddar cheese whey. Freshly pasteurized whey (0.86 L) was ultrasonicated in a contained environment at the same range of frequencies and energies for 10 and 30 min at 37 °C. The US reactor used was characterized by measuring the generation of free radicals in deionized water at different frequencies (20–2000 kHz) and specific energies (8.0–390 kJ/kg). Polar lipid (PL), free and bound fatty acids and lipid oxidation derived compounds were identified and quantified before and after US processing using high performance liquid chromatography equipped with an evaporative light scattering detector (HPLC–ELSD), methylation followed by gas chromatography flame ionized detector (GC-FID) and solid phase micro-extraction gas chromatography mass spectrometry (SPME-GCMS), respectively. The highest concentration of hydroxyl radical formation in the sonicated whey was found between 400 and 1000 kHz. There were no changes in phospholipid composition after US processing at 20, 400, 1000 and 2000 kHz compared to non-sonicated samples. Lipid oxidation volatile compounds were detected in both non-sonicated and sonicated whey. Lipid oxidation was not promoted at any tested frequency or specific energy. Free fatty acid concentration was not affected by US treatment per se. Results revealed that US can be utilized in whey processing applications with no negative impact on whey lipid chemistry.  相似文献   

5.
In the present study, kinetics of synthesis of 2,2-di(prop-2-ynyl)-1H-indene-1,3(2H)-dione was successfully carried out by propargylation of indene-1,3-dione with propargyl bromide using aqueous potassium hydroxide and catalyzed by a newly synthesized phase-transfer catalyst viz., N-benzyl-N-ethyl-N-isopropylpropan-2-ammonium bromide, PTC under ultrasonic (40 kHz, 300 W) assisted organic solvent condition. The pseudo first-order kinetic equation was applied to describe the overall reaction. Under ultrasound irradiation (40 kHz, 300 W) in a batch reactor, it shows that the overall reaction rate can be greatly enhanced with ultrasound irradiation than without ultrasound.  相似文献   

6.
Tuberculosis is an infectious disease caused by the bacterium M. tuberculosis. The aim of this study was to investigate the bactericidal effect and underlying mechanisms of low-frequency and low-intensity ultrasound combined with levofloxacin treatment against M. smegmatis (a surrogate of M. tuberculosis). As part of this study, M. smegmatis was continuously irradiated with low frequency ultrasound (42 kHz) using several different doses whereby both intensity (0.138, 0.190 and 0.329 W/cm2) and exposure time (5, 15 and 20 min) were varied. Flow cytometric analyses revealed that the permeability of M. smegmatis increased following ultrasound exposure. The survival rate, structure and morphology of bacteria in the lower-dose (ISATA = 0.138 W/cm2 for 5 min) ultrasound group displayed no significant differences upon comparison with the untreated group. However, the survival rate of bacteria was significantly reduced and the bacterial structure was damaged in the higher-dose (ISATA = 0.329 W/cm2 for 20 min) ultrasound group. Ultrasound irradiation (0.138 W/cm2) was subsequently applied to M. smegmatis in combination with levofloxacin treatment for 5 min. The results demonstrated that the bactericidal effect of ultrasonic irradiation combined with levofloxacin is higher compared to ultrasound alone or levofloxacin alone.  相似文献   

7.
《Ultrasonics sonochemistry》2014,21(6):2165-2175
Ultrasonic processing can suit a number of potential applications in the dairy industry. However, the impact of ultrasound treatment on milk stability during storage has not been fully explored under wider ranges of frequencies, specific energies and temperature applications. The effect of ultrasonication on lipid oxidation was investigated in various types of milk. Four batches of raw milk (up to 2 L) were sonicated at various frequencies (20, 400, 1000, 1600 and 2000 kHz), using different temperatures (4, 20, 45 and 63 °C), sonication times and ultrasound energy inputs up to 409 kJ/kg. Pasteurized skim milk was also sonicated at low and high frequency for comparison. In selected experiments, non-sonicated and sonicated samples were stored at 4 °C and were drawn periodically up to 14 days for SPME–GCMS analysis. The cavitational yield, characterized in all systems in water, was highest between 400 kHz and 1000 kHz. Volatile compounds from milk lipid oxidation were detected and exceeded their odor threshold values at 400 kHz and 1000 kHz at specific energies greater than 271 kJ/kg in raw milk. However, no oxidative volatile compounds were detected below 230 kJ/kg in batch systems at the tested frequencies under refrigerated conditions. Skim milk showed a lower energy threshold for oxidative volatile formation. The same oxidative volatiles were detected after various passes of milk through a 0.3 L flow cell enclosing a 20 kHz horn and operating above 90 kJ/kg. This study showed that lipid oxidation in milk can be controlled by decreasing the sonication time and the temperature in the system depending on the fat content in the sample among other factors.  相似文献   

8.
In the present work, kinetics of synthesis of 1,3-bis(allyloxy)benzene was successfully carried out by O-allylation of resorcinol with allyl bromide using aqueous potassium hydroxide and catalyzed by a new multi-site phase-transfer catalyst viz., 1,3,5,7-tetrabenzylhexamethylenetetraammonium tetrachloride, MPTC under ultrasonic (40 kHz, 300 W) assisted organic solvent condition. The pseudo first-order kinetic equation was applied to describe the overall reaction. Under ultrasound irradiation (40 kHz, 300 W) in a batch reactor, it shows that the overall reaction rate can be greatly enhanced to seven fold faster with ultrasound irradiation than without ultrasound. The present study provides a method to synthesize ethers by ultrasound assisted liquid–liquid phase-transfer catalysis condition.  相似文献   

9.
In this study, the effects of ultrasound with different ultrasonic frequencies on the properties of sodium alginate (ALG) were investigated, which were characterized by the means of the multi-angle laser light scattering photometer analysis (GPC-MALLS), rheological analysis, circular dichroism (CD) spectrometer and scanning electron microscope (SEM). It showed that the molecular weight (Mw) and molecular number (Mn) of the untreated ALG was 1.927 × 105 g/mol and 4.852 × 104 g/mol, respectively. The Mw of the ultrasound treated ALG was gradually increased from 3.50 × 104 g/mol to 7.34 × 104 g/mol while the Mn of ALG was increased and then decreased with the increase of the ultrasonic frequency. The maximum value of Mn was 9.988 × 104 g/mol when the ALG was treated by ultrasound at 40 kHz. It indicated that ultrasound could induce ALG degradation and rearrangement. The number of the large molecules and small molecules of ALG was changed by ultrasound. The value of dn/dc suggested that the ultrasound could enhance the stability of ALG. Furthermore, it was found that ALG treated by ultrasound at 50 kHz tended to be closer to a Newtonian behavior, while the untreated and treated ALG solutions exhibited pseudoplastic behaviours. Moreover, CD spectra demonstrated that ultrasound could be used to improve the strength of the gel by changing the ratio of M/G, which showed that the minimum ratio of M/G of ALG treated at 135 kHz was 1.34. The gel-forming capacity of ALG was correlated with the content of G-blocks. It suggested that ALG treated by ultrasound at 135 kHz was stiffer in the process of forming gels. The morphology results indicated that ultrasound treatment of ALG at 135 kHz increased its hydrophobic interaction and interfacial activity. This study is important to explore the effect of ultrasound on ALG in improving the physical properties of ALG as food additives, enzyme and drug carriers.  相似文献   

10.
The effects of ultrasound pretreatment with different frequencies and working modes, including mono-frequency ultrasound (MFU), dual-frequency ultrasound (DFU) and tri-frequency ultrasound (TFU), on the degree of hydrolysis (DH) of rice protein (RP) and angiotensin-I-converting enzyme (ACE) inhibitory activity of RP hydrolysate were investigated. Ultraviolet–visible (UV) spectroscopy, fourier transform infrared (FTIR) spectroscopy, surface hydrophobicity and scanning electron microscopy (SEM) of RP pretreated with ultrasound were measured. The results showed that ultrasound pretreatment did not increase DH of RP significantly (p > 0.05). However, all the ultrasound pretreatment increased the ACE inhibitory activity of RP hydrolysate significantly (p < 0.05). The MFU of 20 kHz showed higher ACE inhibitory activity compared to that of other MFU. The ACE inhibitory activity of sequential DFU was higher than that of simultaneous with the same frequency combination. Sequential TFU of 20/35/50 kHz produced the highest increase in ACE inhibitory activity in contrast with other ultrasound frequencies and working modes. All the results under ultrasound pretreatment showed that ultrasound frequencies and working modes were of great effect on the ACE inhibitory activity of RP. The changes in UV–Vis spectra and surface hydrophobicity indicated the unfolding of protein and exposure of hydrophobic groups by ultrasound. The FTIR analysis showed that all the ultrasound pretreatment with different frequencies and working modes decreased α-helix, β-turn content and increased β-sheet, random coil content of RP. The SEM results indicated that ultrasound pretreatment resulted in the deformation of RP. In conclusion, the frequency selection of ultrasound pretreatment of RP is essential for the preparation of ACE inhibitory peptide.  相似文献   

11.
《Ultrasonics sonochemistry》2014,21(6):2099-2106
The inactivation of Enterobacter aerogenes in skim milk using low-frequency (20 kHz) and high-frequency (850 kHz) ultrasonication was investigated. It was found that low-frequency acoustic cavitation resulted in lethal damage to E. aerogenes. The bacteria were more sensitive to ultrasound in water than in reconstituted skim milk having different protein concentrations. However, high-frequency ultrasound was not able to inactivate E. aerogenes in milk even when powers as high as 50 W for 60 min were used. This study also showed that high-frequency ultrasonication had no influence on the viscosity and particle size of skim milk, whereas low-frequency ultrasonication resulted in the decrease in viscosity and particle size of milk. The decrease in particle size is believed to be due to the breakup of the fat globules, and possibly to the cleavage of the κ-casein present at the surface of the casein micelles. Whey proteins were also found to be slightly affected by low-frequency ultrasound, with the amounts of α-lactalbumin and β-lactoglobulin slightly decreasing.  相似文献   

12.
In the present research work deals with the preparation of 1-butoxy-4-nitrobenzene was successfully carried out by 4-nitrophenol with n-butyl bromide using aqueous potassium carbonate and catalyzed by a new multi-site phase-transfer catalyst (MPTC) viz., N1,N4-diethyl-N1,N1,N4,N4-tetraisopropylbutane-1,4-diammonium dibromide, under ultrasonic (40 kHz, 300 W) assisted organic solvent condition. The pseudo first-order kinetic equation was applied to describe the overall reaction. Under ultrasound irradiation (40 kHz, 300 W) in a batch reactor, it shows that the overall reaction greatly enhanced with ultrasound irradiation than without ultrasound. The present study provides a method to synthesize nitro aromatic ethers by ultrasound assisted liquid–liquid multi-site phase-transfer catalysis condition.  相似文献   

13.
《Ultrasonics sonochemistry》2014,21(6):2010-2019
This paper concerns a preliminary study for a new copper recovery process from ionic solvent. The aim of this work is to study the reduction of copper in Deep Eutectic Solvent (choline chloride–ethylene glycol) and to compare the influence of temperature and the ultrasound effects on kinetic parameters. Solutions were prepared by dissolution of chloride copper salt CuCl2 (to obtain Copper in oxidation degree II) or CuCl (to obtain Copper in oxidation degree I) and by leaching metallic copper directly in DES. The spectrophotometry UV–visible analysis of the leached solution showed that the copper soluble form obtained is at oxidation degree I (Copper I). Both cyclic voltammetry and linear voltammetry were performed in the three solutions at three temperatures (25, 50 and 80 °C) and under ultrasonic conditions (F = 20 kHz, PT = 5.8 W) to calculate the mass transfer diffusion coefficient kD and the standard rate coefficient k°. These parameters are used to determine that copper reduction is carried out via a mixed kinetic-diffusion control process. Temperature and ultrasound have the same effect on mass transfer for reduction of CuII/CuI. On the other hand, temperature is more beneficial than ultrasound for mass transfer of CuI/Cu. Standard rate constant improvement due to temperature increase is of the same order as that obtained with ultrasound. But, by combining higher temperature and ultrasound (F = 20 kHz, PT = 5.6 W at 50 °C), reduction limiting current is increased by a factor of 10 compared to initial conditions (T = 25 °C, silent), because ultrasonic stirring is more efficient in lower viscosity fluid. These values can be considered as key-parameters in the design of copper recovery in global processes using ultrasound.  相似文献   

14.
In the silicon wet etching process, the “pseudo-mask” formed by the hydrogen bubbles generated during the etching process is the reason causing high surface roughness and poor surface quality. Based upon the ultrasonic mechanical effect and wettability enhanced by isopropyl alcohol (IPA), ultrasonic agitation and IPA were used to improve surface quality of Si (1 1 1) crystal plane during silicon wet etching process. The surface roughness Rq is smaller than 15 nm when using ultrasonic agitation and Rq is smaller than 7 nm when using IPA. When the range of IPA concentration (mass fraction, wt%) is 5–20%, the ultrasonic frequency is 100 kHz and the ultrasound intensity is 30–50 W/L, the surface roughness Rq is smaller than 2 nm when combining ultrasonic agitation and IPA. The surface roughness Rq is equal to 1 nm when the mass fraction of IPA, ultrasound intensity and the ultrasonic frequency is 20%, 50 W and 100 kHz respectively. The experimental results indicated that the combination of ultrasonic agitation and IPA could obtain a lower surface roughness of Si (1 1 1) crystal plane in silicon wet etching process.  相似文献   

15.
We synthesized oxygen and paclitaxel (PTX) loaded lipid microbubbles (OPLMBs) for ultrasound mediated combination therapy in hypoxic ovarian cancer cells. Our experiments successfully demonstrated that ultrasound induced OPLMBs destruction significantly enhanced the local oxygen release. We also demonstrated that OPLMBs in combination with ultrasound (300 kHz, 0.5 W/cm2, 15 s) yielded anti-proliferative activities of 52.8 ± 2.75% and cell apoptosis ratio of 35.25 ± 0.17% in hypoxic cells at 24 h after the treatment, superior to other treatment groups such as PTX only and PTX-loaded MBs (PLMBs) with or without ultrasound mediation. RT-PCR and Western blot tests further confirmed the reduced expression of HIF-1α and MDR-1/P-gp after ultrasound mediation of OPLMBs. Our experiment suggests that ultrasound mediation of oxygen and drug-loaded MBs may be a useful method to overcome chemoresistance in the hypoxic ovarian cancer cells.  相似文献   

16.
The effects of ultrasonic frequency mode, power density, pretreatment time and other parameters under low power density on the degree of hydrolysis (DH) of defatted wheat germ protein (DWGP) and angiotensin-I-converting enzyme (ACE) inhibitory activity of DWGP hydrolysate were studied in this research. Ultraviolet–visible (UV–Vis) spectra, free sulfhydryl (SH), disulfide bond (SS), surface hydrophobicity and hydrophobic protein content of ultrasound-pretreated protein and hydrophobic amino acid (HAA) content of alcalase-hydrolysate of DWGP were measured under optimized ultrasonic condition. The ultrasonic frequency mode with dual-fixed frequency combination of 28/40 kHz showed higher ACE inhibitory activity of DWGP hydrolysate compared with that of other ultrasound frequency modes and all the ultrasonic frequency combinations involving in 28 kHz showed higher ACE inhibitory activity. Under the dual-fixed frequency ultrasound mode of 28/40 kHz, ultrasonic power density of 60 W/L, pretreatment time of 70 min, temperature of 60°C and substrate concentration of 60 g/L, the ACE inhibitory activity of DWGP hydrolysate was the highest with its value of 74.75% (increased by 62.30% compared to control). However, all the ultrasonic pretreatment did not increase the DH of DWGP significantly (p > 0.05). The changes in UV–Vis spectra, SH and SS groups, surface hydrophobicity and hydrophobic protein content indicated that the structure of DWGP unfolded after ultrasound pretreatment. The HAA content of hydrolysate from the pretreated DWGP increased significantly (p < 0.05). The results proved that ultrasound pretreatment loosed the protein structure and exposed more HAA residues of protein to be attacked easily by alcalase. This resulted in the increase in the HAA content which related to the ACE inhibitory activity.  相似文献   

17.
Enzymatic browning and microbial growth lead to quality losses in apple products. In the present study, fresh apple juice was thermosonicated using ultrasound in-bath (25 kHz, 30 min, 0.06 W cm−3) and ultrasound with-probe sonicator (20 kHz, 5 and 10 min, 0.30 W cm−3) at 20, 40 and 60 °C for inactivation of enzymes (polyphenolase, peroxidase and pectinmethylesterase) and microflora (total plate count, yeast and mold). Additionally, ascorbic acid, total phenolics, flavonoids, flavonols, pH, titratable acidity, °Brix and color values influenced by thermosonication were investigated. The highest inactivation of enzymes was obtained in ultrasound with-probe at 60 °C for 10 min, and the microbial population was completely inactivated at 60 °C. The retention of ascorbic acid, total phenolics, flavonoids and flavonols were significantly higher in ultrasound with-probe than ultrasound in-bath at 60 °C. These results indicated the usefulness of thermosonication for apple juice processing at low temperature, for enhanced inactivation of enzymes and microorganisms.  相似文献   

18.
《Ultrasonics sonochemistry》2014,21(4):1535-1543
The potential of ultrasound-assisted technology has been demonstrated by several laboratory scale studies. However, their successful industrial scaling-up is still a challenge due to the limited pilot and commercial sonochemical reactors. In this work, a pilot reactor for laccase-hydrogen peroxide cotton bleaching assisted by ultrasound was scaled-up. For this purpose, an existing dyeing machine was transformed and adapted by including piezoelectric ultrasonic devices. Laboratory experiments demonstrated that both low frequency, high power (22 kHz, 2100 W) and high frequency, low power ultrasounds (850 kHz, 400 W) were required to achieve satisfactory results. Standard half (4 g/L H2O2 at 90 °C for 60 min) and optical (8 g/L H2O2 at 103 °C for 40 min) cotton bleaching processes were used as references. Two sequential stages were established for cotton bleaching: (1) laccase pretreatment assisted by high frequency ultrasound (850 kHz, 400 W) and (2) bleaching using high power ultrasound (22 kHz, 2100 W). When compared with conventional methods, combined laccase-hydrogen peroxide cotton bleaching with ultrasound energy improved the whitening effectiveness. Subsequently, less energy (temperature) and chemicals (hydrogen peroxide) were needed for cotton bleaching thus resulting in costs reduction. This technology allowed the combination of enzyme and hydrogen peroxide treatment in a continuous process. The developed pilot-scale reactor offers an enhancement of the cotton bleaching process with lower environmental impact as well as a better performance of further finishing operations.  相似文献   

19.
This paper describes the ultrasound assisted dispersal of a low wt./vol.% copper nanopowder mixture and determines the optimum conditions for de-agglomeration. A commercially available powder was added to propan-2-ol and dispersed using a magnetic stirrer, a high frequency 850 kHz ultrasonic cell, a standard 40 kHz bath and a 20 kHz ultrasonic probe. The particle size of the powder was characterized using dynamic light scattering (DLS). Z-Average diameters (mean cluster size based on the intensity of scattered light) and intensity, volume and number size distributions were monitored as a function of time and energy input. Low frequency ultrasound was found to be more effective than high frequency ultrasound at de-agglomerating the powder and dispersion with a 20 kHz ultrasonic probe was found to be very effective at breaking apart large agglomerates containing weakly bound clusters of nanoparticles. In general, the breakage of nanoclusters was found to be a factor of ultrasonic intensity, the higher the intensity the greater the de-agglomeration and typically micron sized clusters were reduced to sub 100 nm particles in less than 30 min using optimum conditions. However, there came a point at which the forces generated by ultrasonic cavitation were either insufficient to overcome the cohesive bonds between smaller aggregates or at very high intensities decoupling between the tip and solution occurred. Absorption spectroscopy indicated a copper core structure with a thin oxide shell and the catalytic performance of this dispersion was demonstrated by drop coating onto substrates and subsequent electroless copper metallization. This relatively inexpensive catalytic suspension has the potential to replace precious metal based colloids used in electronics manufacturing.  相似文献   

20.
Food technologists are always looking to improve the functional properties of proteins. In this sense, in last years ultrasound has been used to improve some functional properties. For this reason, and considering that jumbo squid is an important fishery in northwest Mexico, the purpose of this research was to determine the effect of pulsed ultrasound on the physicochemical characteristics and emulsifying properties of squid (Dosidicus gigas) mantle proteins. Pulsed ultrasound (20 kHz, 20, and 40% amplitude) was applied for 30, 60, and 90 s to a protein extract prepared from giant squid mantle causing an increase (p < 0.05) in surface hydrophobicity (So) from 108.4 ± 1.4 to 239.1 ± 2.4 after application of pulsed ultrasound at 40% of amplitude for 90 s. The electrophoretic profile and the total and reactive sulfhydryl contents were not affected (p  0.05) by the ultrasound treatment. The emulsifying ability of the protein solution was improved (p < 0.05), whereas the Emulsifier Activity Index (EAI) varied from123.67 ± 5.52 m2/g for the control and increased up to 217.7 ± 3.8 m2/g after application of the ultrasound. The Stability Emulsifier Index (EEI) was improved at 40% of amplitude by 60 and 90 s. The results suggested that pulsed ultrasound used as pretreatment induced conformational changes in giant squid proteins, which improved the interfacial association between protein-oil phases, thus contributing to the improvement of their emulsifient properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号