首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A novel alternated ultrasonic and electric pulse enhanced electrochemical process was developed and used for investigating its effectiveness on the degradation of p-nitrophenol (PNP) in an aqueous solution. The impacts of pulse mode, pH, cell voltage, supporting electrolyte concentration, ultrasonic power and the initial concentration of PNP on the performance of PNP degradation were evaluated. Possible pathway of PNP degradation in this system was proposed based on the intermediates identified by GC–MS. Experimental results showed that 94.1% of PNP could be removed at 2 h in the dual-pulse ultrasound enhanced electrochemical (dual-pulse US-EC) process at mild operating conditions (i.e., pulse mode of electrochemical pulse time (TEC) = 50 ms and ultrasonic pulse time (TUS) = 100 ms, initial pH of 3.0, cell voltage of 10 V, Na2SO4 concentration of 0.05 M, ultrasonic powder of 48.8 W and initial concentration of PNP of 100 mg/L), compared with 89.0%, 58.9%, 2.4% in simultaneous ultrasound enhanced electrochemical (US-EC) process, pulsed electrochemical (EC) process and pulsed ultrasound (US), respectively. Moreover, energy used in the dual-pulse US-EC process was reduced by 50.4% as compared to the US-EC process. The degradation of PNP in the pulsed EC process, US-EC process and dual-pulse process followed pseudo-first-order kinetics. Therefore, the dual-pulse US-EC process was found to be a more effective technique for the degradation of PNP and would have a promising application in wastewater treatment.  相似文献   

2.
Nano-sized magnetic Fe0/polyaniline (Fe0/PANI) nanofibers were used as an effective material for sonocatalytic degradation of organic anionic Congo red (CR) dye. Fe0/PANI, was synthesized via reductive deposition of nano-Fe0 onto the PANI nanofibers at room temperature. Prepared catalyst was characterized using HR-TEM, FE-SEM, XRD, FTIR instruments. The efficacy of catalyst in removing CR was assessed colorimetrically using UV–visible spectroscopy under different experimental conditions such as % of Fe0 loading into the composite material, solution pH, initial concentration of dye, catalyst dosage, temperature and ultrasonic power. The optimum conditions for sonocatalytic degradation of CR were obtained at catalyst concentrations = 500 mg.L−1, concentration of CR = 200 ppm, solution pH = neutral (7.0), temperature = 30 °C, % of Fe0 loading = 30% and 500 W ultrasonic power. The experimental results showed that ultrasonic process could remove 98% of Congo red within 30 min with higher Qmax value (Qmax = 446.4 at 25 °C). The rate of degradation of CR dye was much faster in this ultrasonic technique rather than conventional adsorption process. The degradation efficiency declined with the addition of common inorganic salts (NaCl, Na2CO3, Na2SO4 and Na3PO4). The rate of degradation suppressed more with increasing salt concentration. Kinetic and isotherm studies indicated that the degradation of CR provides pseudo-second order rate kinetic and Langmuir isotherm model compared to all other models tested. The excellent high degradation capacity of Fe0/PANI under ultrasonic irradiation can be explained on the basis of the formation of active hydroxyl radicals (OH) and subsequently a series of free radical reactions.  相似文献   

3.
《Ultrasonics sonochemistry》2014,21(6):1982-1987
Sonophotolytic degradation of THMs mixture with different electrical energy ratio was carried out for efficient design of process. The total consumed electrical energy was fixed around 50 W, and five different energy conditions were applied. The maximum degradation rate showed in conditions of US:UV = 1:3 and US:UV = 0:4. This is because the photolytic degradation of bromate compounds is dominant degradation mechanism for THMs removal. However, the fastest degradation of total organic carbon was observed in a condition of US:UV = 1:3. Because hydrogen peroxide generated by sonication was effectively dissociated to hydroxyl radicals by ultraviolet, the concentration of hydroxyl radical was maintained high. This mechanism provided additional degradation of organics. This result was supported by comparison between the concentration of hydrogen peroxide sole and combined process. Consequently, the optimal energy ratio was US:UV = 1:3 for degradation of THMs in sonophotolytic process.  相似文献   

4.
The Q-switched and mode-locked (QML) performance in a diode-pumped Nd:Lu0.2Y0.8VO4 laser with electro-optic (EO) modulator and GaAs saturaber absorber is investigated. In comparison with the solely passively QML laser with GaAs, the dual-loss-modulated QML laser with EO and GaAs can generate pulses with higher stability and shorter pulse width of Q-switched envelope, as well as higher pulse energy. At the repetition rate 1 kHz of EO, the pulse width of Q-switched pulse envelope has a compression of 89% and the pulse energy has an improvement of 24 times. The QML laser characteristics such as the pulse width, pulse peak power etc. have been measured for different small-signal transmittance (T0) of GaAs, different reflectivity (R) of output coupler and modulation frequencies of the EO modulator (fe). The highest peak power and the shortest pulse width of mode-locked pulses are obtained at fe = 1 kHz, R = 90% and T0 = 92.6%. By considering the influences of EO modulator, a developed rate equation model for the dual-loss-modulated QML laser with EO modulator and GaAs is proposed. The numerical solutions of the equations are in good agreement with the experimental results.  相似文献   

5.
We report a wide bandwidth (Δλ=8 nm) optical pulsed MOPA (master oscillator power amplifier) source emitting 11.23 mJ pulses (1.25 MW peak power) in the wavelength centered at (λ=1064 nm). Pulse duration and repetition rate were 9 ns and from 10 Hz to 100 Hz, respectively. In order to suppress amplified spontaneous emission (ASE), multi-stage pulse pump technology is applied. And the large core diameter (90 μm) and wide bandwidth ensures the high peak power and energy output.  相似文献   

6.
Wavelength tunable high energy ultrashort laser pulses are generated from a large-mode-area photonic crystal fiber in anomalous dispersion (AD) regime. A simplified laser cavity design with one fine polished facet of the fiber as a cavity mirror is used. The intra-cavity dispersion compensation is achieved by a grating pair, the spatial dispersed light from which also have optical spectrum filtering effects combined with the limited aperture of the fiber core. The laser system is able to generate ultrashort pulses ranging from 494 fs (with 56 nJ pulse energy) to 1.24 ps (with 49 nJ pulse energy) at 55 MHz repetition rate. The filtering mechanism benefits the generation of high energy pulses with narrowing pulse duration in AD regime. An undulation in frequency and time domain is also observed with the increase of the pump power. Furthermore, this laser system is directly used as seed for supercontinuum generation.  相似文献   

7.
《Ultrasonics》2013,53(1):225-231
The design of high voltage pulser for air coupled ultrasound imaging is presented. It is dedicated for air-coupled ultrasound applications when piezoelectric transducer design is used. Two identical N-channel MOSFETs are used together with 1200 V high and low side driver IC. Simple driving pulses’ delay and skew circuit is used to reduce the cross-conduction. Analysis of switch peak current and channel resistance relation to maximum operation frequency and load capacitance is given. PSPICE simulation was used to analyze the gate driver resistance, gate pulse skew, pulse amplitude influence on energy consumption when loaded by capacitive load. Experimental investigation was verified against simulation and theoretical predictions. For 500 pF capacitance, which is most common for piezoelectric air coupled transducers, pulser consumes 650 μJ at 1 kV pulse and 4 μJ at 50 V. Pulser is capable to produce up to 1 MHz pulse trains with positive 50 V–1 kV pulses with up to 10 A peak output current. When loaded by 200 kHz transducer at 1 kV pulse amplitude rise time is 40 ns and fall time is 32 ns which fully satisfies desired 1 MHz bandwidth.  相似文献   

8.
High energy picosecond pulse generation from a two contact tapered 5 quantum well (QW) InGaAlAs/InP diode laser (1550 nm) is investigated using a passive Q-switching technique. Single peak pulses with pulse energies as high as 500 pJ and durations of typically hundreds of picoseconds are obtained from the device by applying reverse bias voltages in the range of 0 V to ?18 V to the absorber section of the device. It is also demonstrated that more symmetrical Q-switched pulses are obtained by reducing the duration of electrical pulses applied to the gain section of the laser. Such an improvement is attributed to the reduced time of the population inversion in the gain section due to shorter electrical pulse. We also show comparatively the dependence of optical spectra on the reverse bias voltage for diode lasers emitting at 1550 nm and 1350 nm, and demonstrate that better spectral output is obtained from AlGaInAs lasers emitting at a wavelength of 1550 nm.  相似文献   

9.
A passive, Q-switched pulsed, Nd:YAG laser system was designed and built, which can provide a potential compact robust laser source for portable laser induced breakdown spectroscopy systems.The developed laser system operates at 1064 nm. Each laser shot contains a train of pulses having maximum total output energy of 170 mJ. The number of pulses varies from 1–6 pulses in each laser shot depending on the pump energy. The pulse width of each pulse ranges from 20 to 30 ns. The total duration of the output pulse train is within 300 μs. The multi-pulse nature of the laser shots was employed to enhance the LIBS signal. To validate the system, LIBS measurements and analysis were performed on ancient ceramic samples collected from Al-Fustat excavation in Old Cairo. The samples belong to different Islamic periods in Egypt history. The results obtained are highly indicative that useful information can be provided to archeologists for use in restoring and repairing of precious archeological objects.  相似文献   

10.
Different surface morphologies on AISI 304 stainless steel have been obtained after millisecond Nd:YAG pulsed laser oxidation. The effects of laser processing parameters, especially pulse width and laser energy density on the surface morphologies of the stainless steel were emphatically investigated. The results showed that surface morphologies were significantly changed with increasing laser pulse widths and laser energy densities. When the pulse width was 0.2–1.0 ms and laser energy density was 4.30×106–7.00×106 J/m2, the surface was obviously damaged and the morphologies varied gradually from craters to ripple structures. However, when the pulse width was longer than 1 ms and the laser energy density was increased from 1.90×107 to 3.16×107 J/m2, the sizes of craters got smaller until disappeared and the surface became flatter and smoother. Nevertheless, the smooth surface was not obtained under overhigh laser energy densities. In addition, the schematic relationship was used to describe the formation process and mechanism of different surface morphologies.  相似文献   

11.
We report on the experimental demonstration of saturated X-ray lasing on the 4 d  4p, J = 0–1 line of nickel-like barium (Ba, Z = 56) at a wavelength of 9.2 nm, using a main pulse energy of 9 J in a 1.5-ps duration pulse from a Nd:glass chirped-pulse amplification laser. Gain saturation was achieved by applying a triple-pulse scheme in which a weak (few-percent) prepulse, preceding the main pulse by 2.4 ns, is followed by a second, relatively intense (16%) prepulse ~ 50 ps before the main pulse. For handling convenience, compound targets of BaF2 were used, either in the form of windows or coated onto glass slides.  相似文献   

12.
Free electron lasers (FEL) are new generation accelerator-based short wavelength light sources providing high pulse intensity and femtosecond pulse duration, which enable investigation of interaction of elementary excitations in solids under extreme conditions. Using the FLASH facility of HASYLAB at DESY (Hamburg, Germany), we investigated the response of different materials with scintillating properties based on intrinsic emissions to the 25.6 and 13.8 nm FEL radiation by means of time-resolved luminescence spectroscopy. FLASH delivered single pulses of 25 fs duration having energy per pulse up to 30 μJ resulting in power densities of ~1012 W/cm2 on crystals. As a function of excitation density we observed the shortening of lifetime and non-exponential behaviour of emission decays in CaWO4, while the emission spectra recorded are comparable to those obtained at conventional excitation sources.  相似文献   

13.
Clinically chemo-resistant types of cancers do not respond well to conventional therapies. To treat and enhance the efficacy of drug delivery for these cancers, we have developed an in vitro model of a combination therapy using adult human mesenchymal stem cells, electrical pulses and chemo drug. Adult Mesenchymal stem cells were used because they are similar to cancer stem cells which cause the tumor to be chemo- and radiation resistant. These cells, derived from human adult bone marrow were subjected to low voltage, long duration (200 V/cm, 40 ms and 450 V/cm, 25 ms) and high voltage, short duration (1200 V/cm, 100 μs) pulses. The effect of these voltages on the viability and proliferation ability of these cells in the presence and absence of Bleomycin (chemodrug used for treating various cancers, FDA approved in US and other respective medical agencies in other countries,) indicate the potential of transfer of this technique to clinical practice for effective electro-targeted stem cell therapy.  相似文献   

14.
《Ultrasonics sonochemistry》2014,21(3):1206-1212
The decoloration of reactive dye C.I. Reactive Blue 19 (RB 19) using combined ultrasound with the Fenton process has been investigated. The effect of varying the concentrations of hydrogen peroxide and iron sulfate, initial pH, ultrasonic power, initial dye concentration and dissolved gas on the decoloration and degradation efficiencies was measured. Calibration of the ultrasound systems was performed using calorimetric measurements and oxidative species monitoring using the Fricke dosimeter and degradations were carried out with a 20 kHz probe type transducer at 2, 4, 6 and 8 W cm−2 of acoustic intensity at 15, 25, 50 and 75 mg L−1 initial dye concentrations. First order rate kinetics was observed. It was found that while the degradation rate due to ultrasound alone was slow, sonication significantly accelerated the Fenton reaction. While the results were similar to those reported for other dyes, the effects occurred at lower concentrations. The rate and extent of decoloration of RB 19 increased with rising hydrogen peroxide concentration, ultrasonic powers and iron sulfate concentration but decreased with increasing dye concentration. An optimum pH value of pH = 3.5 was found. The rate of decoloration was higher when dissolved oxygen was present as compared with nitrogen and argon confirming the solution phase mechanism of the degradation.  相似文献   

15.
The temperature rise from electrical over-stress (EOS) and electrostatic discharge (ESD) of shielded AMR sensors used for magnetic tape storage devices is studied using square wave voltage pulses with widths from 35 ns to 2 ms. A phenomenological model has been developed to describe the dynamic stripe temperature versus pulse width and power for the time range studied as well as for a wide range in sensor geometries. The temperature required to melt the stripes was determined to be 1437±69C. The activation energy required to achieve a 2% increase in stripe resistance for pulses between 100 ns and 1 ms was determined to be 2.8 eV and is associated with interdiffusion of the stripe metals.  相似文献   

16.
Degradation of azo dye Acid Orange 7 (AO7) by zero-valent aluminum (ZVAl) in combination with ultrasonic irradiation was investigated. The preliminary studies of optimal degradation methodology were conducted with sole ultrasonic, sole ZVAl/air system, ultrasonication + ZVAl/air system (US-ZVAl). In ZVAl/air system, the degradation of AO7 could almost not be observed within 30 min. The degradation of AO7 by ZVAl/air system was obviously enhanced under ultrasound irradiation, and the enhancement is mainly attributed to that the production of hydroxyl radicals in ultrasound-ZVAl process was much higher than that in sole ultrasonic or in sole ZVAl/air system. The variables considered for the effect of degradation were the power of ultrasound, the initial concentration of AO7, as well as the initial pH value and the dosage of zero-valent aluminum. The results showed that the decolorization rate increased with the increase of power density and the dosage of ZVAl, but decreased with the increase of initial pH value and initial concentration of AO7. More than 96% of AO7 removal was achieved within 30 min under optimum operational conditions (AO7: 20 mg/L, ZVAl: 2 g/L, pH: 2.5, ultrasound: 20 kHz, 300 W). This study demonstrates that ultrasound-ZVAl process can effectively decolorize the azo dye AO7 in wastewater.  相似文献   

17.
In this study, the synthesis of Ce0.8Sm0.2O1.9 (SDC) solid electrolyte by the ultrasound assisted co-precipitation method was accomplished to explore the effects of ultrasound power, ultrasound pulse ratio and probe type upon the ionic conductivity of SDC as well as the lattice parameter, the microstructure and the density. Fine powders of uniform crystallite sizes (average 11.70 ± 0.62 nm) were obtained, needing lower sintering temperature. The SDC powders were successfully sintered to a relative density of over 95% at 1200 °C (5 °C min?1) for 6 h. The micrograph of SDC pellets showed non-agglomerated and well-developed grains with average size of about 200 nm. X-ray diffraction analysis showed that the lattice parameter increased with increasing acoustic intensity and reached a maximum for the 14.94 W cm?2. Further, a linear relationship was detected between the lattice parameter and the ionic conductivity, inspiring a dopant like effect of US on the electrolyte properties. The highest ionic conductivity as σ800°C = 3.07 × 10?2 S cm?1 with an activation energy Ea = 0.871 kJ mol?1 was obtained with pulsed ultrasound for an acoustic intensity of 14.94 W cm?2, using 19 mm probe and 8:2 pulse ratio.  相似文献   

18.
A hybrid advanced oxidation process combining sonochemistry (US) and electrochemistry (EC) for the batch scale degradation of ibuprofen was developed. The performance of this hybrid reactor system was evaluated by quantifying on the degradation of ibuprofen under the variation in electrolytes, frequency, applied voltage, ultrasonic power density and temperature in aqueous solutions with a platinum electrode. Among the methods examined (US, EC and US/EC), the hybrid method US/EC resulted 89.32%, 81.85% and 88.7% degradations while using NaOH, H2SO4 and deionized water (DI), respectively, with a constant electrical voltages of 30 V, an ultrasound frequency of 1000 kHz, and a power density of 100 W L−1 at 298 K in 1 h. The degradation was established to follow pseudo first order kinetics. In addition, energy consumption and energy efficiencies were also calculated. The probable mechanism for the anodic oxidation of ibuprofen at a platinum electrode was also postulated.  相似文献   

19.
We demonstrate different operation states which can be switched by the polarization control in an erbium-doped fiber laser cavity with normal dispersion, including passive single-pulse and multiple-pulse mode-locking, coherent pulse pattern, and passive Q-switching. The mode-locked single pulse has a smooth and broad rectangular-shaped spectrum. With increasing pump power, multiple pulses appear and finally six pulses are observed, where the pulses have no interaction with each other. Keeping the pump power at 407 mW and adjusting the polarization state, we observe the coherent pulse pattern with the pulse numbers from 2 to 5. It is the first time five coherent pulses in the 1.55 μm normal dispersion cavity have been observed, to our knowledge. The mode-locked spectra are highly modulated and the largest pulse separation of 31.9 ps is observed for the two-pulse case. When the pump power exceeds 180 mW, the mode-locked operation can be switched to the passively Q-switched operation by controlling the polarization state. The repetition rate and pulse width can be changed by pump power variation, and the spectrum is tunable in the range of 8.45 nm.  相似文献   

20.
《Ultrasonics sonochemistry》2014,21(4):1358-1365
Ultrasonic-assisted heterogeneous Fenton reaction was used for degradation of nitrobenzene (NB) at neutral pH conditions. Nano-sized oxides of α-Fe2O3 and CuO were prepared, characterized and tested in degradation of NB (10 mg L−1) under sonication of 20 kHz at 25 °C. Complete degradation of NB was effected at pH 7 in presence of 10 mM H2O2 after 10 min of sonication in presence of α-Fe2O3 (1.0 g L−1), (k = 0.58 min−1) and after 25 min in case of CuO (k = 0.126 min−1). α-Fe2O3 showed also effective degradation under the conditions of 0.1 g L−1 oxide and 5.0 mM of H2O2, even though with a lower rate constant (0.346 min−1). Sonication plays a major role in enhancing the production of hydroxyl radicals in presence of solid oxides. Hydroxyl radicals-degradation pathway is suggested and adopted to explain the differences noted in rate constants recorded on using different oxides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号