首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Ultrasonics sonochemistry》2014,21(4):1535-1543
The potential of ultrasound-assisted technology has been demonstrated by several laboratory scale studies. However, their successful industrial scaling-up is still a challenge due to the limited pilot and commercial sonochemical reactors. In this work, a pilot reactor for laccase-hydrogen peroxide cotton bleaching assisted by ultrasound was scaled-up. For this purpose, an existing dyeing machine was transformed and adapted by including piezoelectric ultrasonic devices. Laboratory experiments demonstrated that both low frequency, high power (22 kHz, 2100 W) and high frequency, low power ultrasounds (850 kHz, 400 W) were required to achieve satisfactory results. Standard half (4 g/L H2O2 at 90 °C for 60 min) and optical (8 g/L H2O2 at 103 °C for 40 min) cotton bleaching processes were used as references. Two sequential stages were established for cotton bleaching: (1) laccase pretreatment assisted by high frequency ultrasound (850 kHz, 400 W) and (2) bleaching using high power ultrasound (22 kHz, 2100 W). When compared with conventional methods, combined laccase-hydrogen peroxide cotton bleaching with ultrasound energy improved the whitening effectiveness. Subsequently, less energy (temperature) and chemicals (hydrogen peroxide) were needed for cotton bleaching thus resulting in costs reduction. This technology allowed the combination of enzyme and hydrogen peroxide treatment in a continuous process. The developed pilot-scale reactor offers an enhancement of the cotton bleaching process with lower environmental impact as well as a better performance of further finishing operations.  相似文献   

2.
An efficient intermittent ultrasonic treatment strategy was developed to improve laccase production from Trametes versicolor mycelia cultures. The optimized strategy consisted of exposing 2-day-old mycelia cultures to 5-min ultrasonic treatments for two times with a 12-h interval at the fixed ultrasonic power and frequency (120 W, 40 kHz). After 5 days of culture, this strategy produced the highest extracellular laccase activity of 588.9 U/L among all treatments tested which was 1.8-fold greater than the control without ultrasound treatment. The ultrasonic treatment resulted in a higher pellet porosity that facilitated the mass transfer of nutrients and metabolites from the pellets to the surrounding liquid. Furthermore, the ultrasonic treatment induced the expression of the laccase gene (lcc), which correlated with a sharp increase in both extracellular and intracellular laccase activity. This is the first study to find positive effects of ultrasound on gene expression in fungal cells. These results provide a basis for understanding the stimulation of metabolite production and process intensification by ultrasonic treatment in filamentous fungal culture.  相似文献   

3.
《Ultrasonics sonochemistry》2014,21(4):1519-1526
Palm oil mill effluent (POME) is a highly contaminating wastewater due to its high chemical oxygen demand (COD) and biochemical oxygen demand (BOD). Conventional treatment methods require longer residence time (10–15 days) and higher operating cost. Owing to this, finding a suitable and efficient method for the treatment of POME is crucial. In this investigation, ultrasound cavitation technology has been used as an alternative technique to treat POME. Cavitation is the phenomenon of formation, growth and collapse of bubbles in a liquid. The end process of collapse leads to intense conditions of temperature and pressure and shock waves which assist various physical and chemical transformations. Two different ultrasound systems i.e. ultrasonic bath (37 kHz) and a hexagonal triple frequency ultrasonic reactor (28, 40 and 70 kHz) of 15 L have been used. The results showed a fluctuating COD pattern (in between 45,000 and 60,000 mg/L) while using ultrasound bath alone, whereas a non-fluctuating COD pattern with a final COD of 27,000 mg/L was achieved when hydrogen peroxide was introduced. Similarly for the triple frequency ultrasound reactor, coupling all the three frequencies resulted into a final COD of 41,300 mg/L compared to any other individual or combination of two frequencies. With the possibility of larger and continuous ultrasonic cavitational reactors, it is believed that this could be a promising and a fruitful green process engineering technique for the treatment of POME.  相似文献   

4.
This study evaluates the bleaching efficiency of enzymatically scoured linen fabrics using a combined laccase–hydrogen peroxide bleaching process with and without ultrasonic energy, with the goal of obtaining fabrics with high whiteness levels, well preserved tensile strength and higher dye uptake. The effect of the laccase enzyme and the combined laccase–hydrogen peroxide bleaching process with and without ultrasound has been investigated with regard to whiteness value, tensile strength, dyeing efficiency and dyeing kinetics using both reactive and cationic dyes. The bleached linen fabrics were characterized using X-ray diffraction and by measuring tensile strength and lightness. The dyeing efficiency and kinetics were characterized by measuring dye uptake and colour fastness. The results indicated that ultrasound was an effective technique in the combined laccase–hydrogen peroxide bleaching process of linen fabrics. The whiteness values expressed as lightness of linen fabrics is enhanced by using ultrasonic energy. The measured colour strength values were found to be slightly better for combined laccase–hydrogen peroxide/ultrasound-assisted bleached fabrics than for combined laccase–hydrogen peroxide for both reactive and cationic dyes. The fastness properties of the fabrics dyed with reactive dye were better than those obtained when using cationic dye. The time/dye uptake isotherms were also enhanced when using combined laccase–hydrogen peroxide/ultrasound-assisted bleached fabric, which confirms the efficiency of ultrasound in the combined oxidative bleaching process. The dyeing rate constant, half-time of dyeing and dyeing efficiency have been calculated and discussed.  相似文献   

5.
The effect of flow in an ultrasonic reactor is an important consideration for practical applications and for the scale-up of ultrasonic processing. Previous literature on the influence of flow on sonochemical activity has reported conflicting results. Therefore, this work examined the effect of overhead stirring at four different frequencies, 40, 376, 995 and 1179 kHz, in two different reactor configurations. Comparable power settings were utilised to elucidate the underlying mechanisms of interactions between the flow and sonochemical activity. The sonochemical activity was determined by the yield of hydrogen peroxide, measured by iodide dosimetry, and the active region was visualised with sonochemiluminescence imaging. The overhead stirring in the low frequency reactor altered the yield of hydrogen peroxide so it produced the maximum yield out of the four frequencies. The increase in hydrogen peroxide yield was attributed to a reduction in coalescence at 40 kHz. However at the higher frequencies, coalescence was not found to be the main reason behind the observed reductions in sonochemical yield. Rather the prevention of wave propagation and the reduction of the standing wave portion of the field were considered.  相似文献   

6.
The current work deals with the value addition of lactose by transforming into hydrolyzed lactose syrup containing glucose and galactose in major proportion using the novel approach of ultrasound assisted acid catalyzed lactose hydrolysis. The hydrolysis of lactose was performed in ultrasonic bath (33 kHz) at 50% duty cycle at different temperatures as 65 °C and 70 °C and two different hydrochloric acid (HCl) concentrations as 2.5 N and 3 N. It was observed that acid concentration, temperature and ultrasonic treatment were the major factors in deciding the time required to achieve ∼90% hydrolysis. The ultrasonic assisted approach resulted in reduction in the reaction time and the extent of intensification was established to be dependent on the temperature, acid concentration and time of ultrasonic exposure. It was observed that the maximum process intensification obtained by introduction of ultrasound in the lactose hydrolysis process performed at 70 °C and 3 N HCl was reduction in the required time for ∼90% hydrolysis from 4 h (without the presence of ultrasound) to 3 h. The scale-up study was also performed using an ultrasonic bath with longitudinal horn (36 kHz as operating frequency) at 50% duty cycle, optimized temperature of 70 °C and acid concentration of 3 N. It was observed that the reaction was faster in the presence of ultrasound and stirring by axial impeller at rpm of 225 ± 25. The time required to complete ∼90% of hydrolysis remained almost the same as observed for small scale study on ultrasonic bath (33 kHz) at 50% duty cycle. The use of recovered lactose from whey samples instead of pure lactose did not result in any significant changes in the progress of hydrolysis, confirming the efficacy of the selected approach. Overall, the work has presented a novel ultrasound assisted approach for intensified lactose hydrolysis.  相似文献   

7.
The effects of 200 kHz ultrasonic irradiation on DNA or RNA formation and membrane permeability of yeast cells were investigated by flow cytometry and compared with those of 60Co γ-ray radiation. Colony counting analyses were also performed for comparison. It was observed that the colony-forming activity of yeast cells was not affected by small doses of ultrasonic irradiation, but was closely related to the amounts of sonolytically formed hydrogen peroxide at concentrations of more than 80 μM. On the other hand, γ-rays directly retarded colony-forming ability in addition to the effects of radiolytically formed hydrogen peroxide. The results obtained by flow cytometry also indicated that the amounts of DNA or RNA formed decreased with an increase in ultrasonic irradiation time without any threshold. These results indicated that flow cytometry can show early growth activities, but that colony counting analyses are insufficient to evaluate continuous and quantitative changes in these activities. In addition, by analyzing the amounts of DNA or RNA formed in the presence of the same amount of hydrogen peroxide, it was found that DNA or RNA formation behavior in the presence of hydrogen peroxide with no irradiation was similar to that following ultrasonic irradiation. These results suggested that similar chemical effects due to the formation of hydrogen peroxide were produced during ultrasonic irradiation. In addition, physical effects of ultrasound, such as shock wave, hardly contributed to cell inactivation and cell membrane damage, because relatively high frequency ultrasound was used here. In the case of γ-ray radiation, direct physical effects on the cells were clearly observed.  相似文献   

8.
Final effluent from a pulp and paper kraft mill was exposed to power ultrasound at 357 kHz with the aim of reducing color, turbidity, and chemical oxygen demand (COD). Absorbance measurements showed a bleaching of the effluent at wavelengths above 250 nm, indicating loss of aromatic chromophores. Effluent turbidity also decreased. Surprisingly, there was no observable decrease in COD, within experimental error. This is attributed to the presence of bicarbonate and sulfate ions in the final effluent, which react with hydroxyl radicals and effectively block the oxidation of organics in the effluent. This was demonstrated by sonicating solutions of potassium hydrogen phthalate (KHP) containing chloride, bicarbonate, or sulfate ions, which are the major inorganic ions in the final effluent studied. A solution containing only 2.3 mM KHP showed a 19% reduction in COD after 6 h of sonication. An identical solution with 200 ppm chloride also showed a 19% COD reduction. However, solutions with 700 ppm sulfate and 400 ppm bicarbonate showed COD reductions of 11% and 3%, respectively.  相似文献   

9.
《Ultrasonics sonochemistry》2014,21(3):1206-1212
The decoloration of reactive dye C.I. Reactive Blue 19 (RB 19) using combined ultrasound with the Fenton process has been investigated. The effect of varying the concentrations of hydrogen peroxide and iron sulfate, initial pH, ultrasonic power, initial dye concentration and dissolved gas on the decoloration and degradation efficiencies was measured. Calibration of the ultrasound systems was performed using calorimetric measurements and oxidative species monitoring using the Fricke dosimeter and degradations were carried out with a 20 kHz probe type transducer at 2, 4, 6 and 8 W cm−2 of acoustic intensity at 15, 25, 50 and 75 mg L−1 initial dye concentrations. First order rate kinetics was observed. It was found that while the degradation rate due to ultrasound alone was slow, sonication significantly accelerated the Fenton reaction. While the results were similar to those reported for other dyes, the effects occurred at lower concentrations. The rate and extent of decoloration of RB 19 increased with rising hydrogen peroxide concentration, ultrasonic powers and iron sulfate concentration but decreased with increasing dye concentration. An optimum pH value of pH = 3.5 was found. The rate of decoloration was higher when dissolved oxygen was present as compared with nitrogen and argon confirming the solution phase mechanism of the degradation.  相似文献   

10.
The performance of an ultrasound reactor chamber relies on the sound pressure level achieved throughout the system. The active volume of a high frequency ultrasound chamber can be determined by the sound pressure penetration and distribution provided by the transducers. This work evaluated the sound pressure levels and uniformity achieved in water by selected commercial scale high frequency plate transducers without and with reflector plates. Sound pressure produced by ultrasonic plate transducers vertically operating at frequencies of 400 kHz (120 W) and 2 MHz (128 W) was characterized with hydrophones in a 2 m long chamber and their effective operating distance across the chamber’s vertical cross section was determined. The 2 MHz transducer produced the highest pressure amplitude near the transducer surface, with a sharp decline of approximately 40% of the sound pressure occurring in the range between 55 and 155 mm from the transducer. The placement of a reflector plate 500 mm from the surface of the transducer was shown to improve the sound pressure uniformity of 2 MHz ultrasound. Ultrasound at 400 kHz was found to penetrate the fluid up to 2 m without significant losses. Furthermore, 400 kHz ultrasound generated a more uniform sound pressure distribution regardless of the presence or absence of a reflector plate. The choice of the transducer distance to the opposite reactor wall therefore depends on the transducer plate frequency selected. Based on pressure measurements in water, large scale 400 kHz reactor designs can consider larger transducer distance to opposite wall and larger active cross-section, and therefore can reach higher volumes than when using 2 MHz transducer plates.  相似文献   

11.
《Ultrasonics sonochemistry》2014,21(4):1310-1317
A novel sonoelectrochemical catalytic oxidation-driven process using a nanocoated electrode to treat methylene blue (MB) wastewater was developed. The nano-scale (nanocoated) electrode generated more hydroxyl radicals than non-nano-scale (non-nanocoated) electrodes did. However, hydroxyl radicals were easily adsorbed by the nanomaterial and thus were not able to enter the solution. Supersonic waves were found to enhance the mass-transfer effect on the nanocoated electrode surface, resulting in rapid diffusion of the generated hydroxyl radicals into the solution. In solution, the hydroxyl radicals then reacted with organic pollutants in the presence of ultrasonic waves. The effect of the nanocoated electrode on the MB wastewater treatment process was enhanced by ultrasound when compared to the non-nanocoated electrode used under the same conditions. The synergy of the nanocoated electrode and ultrasonic waves towards MB degradation was then studied. The optimum operating conditions resulted in a 92% removal efficiency for TOC and consisted of a current of 600 mA, an ultrasound frequency of 45 kHz, and a supersonic power of 250 W. The mechanism of ultrasound enhancement of the nanocoated electrode activity with respect to MB treatment is discussed. The reaction intermediates of the sonoelectrochemical catalytic oxidation process were monitored, and degradation pathways were proposed. The sonoelectrochemical catalytic oxidation-driven process using nanocoated electrodes was found to be a very efficient method for the treatment of non-biodegradable wastewater.  相似文献   

12.
Ultrasonic frequencies of 20 kHz, 382 kHz, 584 kHz, 862 kHz (and 998 kHz) have been compared with regard to energy output and hydroxyl radical formation utilising the salicylic acid dosimeter. The 862 kHz frequency inputs 6 times the number of Watts into water, as measured by calorimetry, with the other frequencies having roughly the same value under very similar conditions. A plausible explanation involving acoustic fountain formation is proposed although enhanced coupling between this frequency and water cannot be discounted. Using the salicylic acid dosimeter and inputting virtually the same Wattages it is established that 862 kHz is around 10% more efficient at generating hydroxyl radicals than the 382 kHz but both of these are far more effective than the other frequencies. Also, it is found that as temperature increases to 42 °C then the total dihydroxybenzoic acid (Total DHBA) produced is virtually identical for 382 kHz and 862 kHz, though 582 kHz is substantially lower, when the power levels are set at approximately 9 W for all systems. An equivalent power level of 9 W could not be obtained for the 998 kHz transducer so a direct comparison could not be made in this instance. These results have implications for the optimum frequencies chosen for both Advanced Oxidation Processes (AOPs) and organic synthesis augmented by ultrasound.  相似文献   

13.
In this work, the sonolytic degradation of an anthraquinonic dye, C.I. Acid Blue 25 (AB25), in aqueous phase using high frequency ultrasound waves (1700 kHz) for an acoustic power of 14 W was investigated. The sonochemical efficiency of the reactor was evaluated by potassium iodide dosimeter, Fricke reaction and hydrogen peroxide production yield. The three investigated methods clearly show the production of oxidizing species during sonication and well reflect the sonochemical effects of high frequency ultrasonic irradiation. The effect of operational conditions such as the initial AB25 concentration, solution temperature and pH on the degradation of AB25 was studied. Additionally, the influence of addition of salts on the degradation of dye was examined. The rate of AB25 degradation was dependent on initial dye concentration, pH and temperature. Addition of salts increased the degradation of dye. Experiments conducted using distilled and natural waters demonstrated that the degradation was more efficient in the natural water compared to distilled water. To increase the efficiency of AB25 degradation, experiments combining ultrasound with Fe(II) or H2O2 were conducted. Fe(II) induced the dissociation of ultrasonically produced hydrogen peroxide, leading to additional OH radicals which enhance the degradation of dye. The combination of ultrasound with hydrogen peroxide looks to be a promising option to increase the generation of free radicals. The concentration of hydrogen peroxide plays a crucial role in deciding the extent of enhancement obtained for the combined process. The results of the present work indicate that ultrasound/H2O2 and ultrasound/Fe(II) processes are efficient for the degradation of AB25 in aqueous solutions by high frequency ultrasonic irradiation.  相似文献   

14.
Curcumin, a dietary phytochemical, has been extracted from rhizomes of Curcuma amada using ultrasound assisted extraction (UAE) and the results compared with the conventional extraction approach to establish the process intensification benefits. The effect of operating parameters such as type of solvent, extraction time, extraction temperature, solid to solvent ratio, particle size and ultrasonic power on the extraction yield have been investigated in details for the approach UAE. The maximum extraction yield as 72% was obtained in 1 h under optimized conditions of 35 °C temperature, solid to solvent ratio of 1:25, particle size of 0.09 mm, ultrasonic power of 250 W and ultrasound frequency of 22 kHz with ethanol as the solvent. The obtained yield was significantly higher as compared to the batch extraction where only about 62% yield was achieved in 8 h of treatment. Peleg’s model was used to describe the kinetics of UAE and the model showed a good agreement with the experimental results. Overall, ultrasound has been established to be a green process for extraction of curcumin with benefits of reduction in time as compared to batch extraction and the operating temperature as compared to Soxhlet extraction.  相似文献   

15.
The ultrasonic horn and bath reactors were compared based on production of angiotensin-converting-enzyme (ACE) inhibitory peptides from defatted wheat germ proteins (DWGP). The DWGP was sonicated before hydrolysis by Alcalase. Degree of hydrolysis, ACE-inhibitory activity, surface hydrophobicity, fluorescence intensity, free sulfhydryl (SH), and disulfide bond (SS) were determined. The highest ACE-inhibitory activity of DWGP hydrolysate was obtained at power intensity of 191.1 W/cm2 for 10 min in the ultrasonic horn reactor. The fixed frequency of 33 kHz and the sweep frequency of 40 ± 2 kHz resulted in the maximum ACE-inhibitory activity. The combined irradiation of dual fixed frequency (24/68 kHz) produced significant increase in ACE-inhibitory activity compared with single frequency (33 kHz). The ultrasonic probe resulted in significant higher ACE-inhibitory activity compared with ultrasonic bath operating at single or dual fixed and sweep frequencies. The changes in conformation of the DWGP due to sonication were confirmed by the changes in fluorescence intensity, surface hydrophobicity, SHf and SS contents and they were found in conformity with the ACE-inhibitory activity in case of the ultrasonic horn reactor but not in bath reactor.  相似文献   

16.
In the silicon wet etching process, the “pseudo-mask” formed by the hydrogen bubbles generated during the etching process is the reason causing high surface roughness and poor surface quality. Based upon the ultrasonic mechanical effect and wettability enhanced by isopropyl alcohol (IPA), ultrasonic agitation and IPA were used to improve surface quality of Si (1 1 1) crystal plane during silicon wet etching process. The surface roughness Rq is smaller than 15 nm when using ultrasonic agitation and Rq is smaller than 7 nm when using IPA. When the range of IPA concentration (mass fraction, wt%) is 5–20%, the ultrasonic frequency is 100 kHz and the ultrasound intensity is 30–50 W/L, the surface roughness Rq is smaller than 2 nm when combining ultrasonic agitation and IPA. The surface roughness Rq is equal to 1 nm when the mass fraction of IPA, ultrasound intensity and the ultrasonic frequency is 20%, 50 W and 100 kHz respectively. The experimental results indicated that the combination of ultrasonic agitation and IPA could obtain a lower surface roughness of Si (1 1 1) crystal plane in silicon wet etching process.  相似文献   

17.
The effects of ultrasound on corn slurry saccharification yield and particle size distribution was studied in both batch and continuous-flow ultrasonic systems operating at a frequency of 20 kHz. Ground corn slurry (28% w/v) was prepared and sonicated in batches at various amplitudes (192–320 μmpeak-to-peak (p–p)) for 20 or 40 s using a catenoidal horn. Continuous flow experiments were conducted by pumping corn slurry at various flow rates (10–28 l/min) through an ultrasonic reactor at constant amplitude of 12 μmp–p. The reactor was equipped with a donut shaped horn. After ultrasonic treatment, commercial alpha- and gluco-amylases (STARGENTM 001) were added to the samples, and liquefaction and saccharification proceeded for 3 h. The sonicated samples were found to yield 2–3 times more reducing sugars than unsonicated controls. Although the continuous flow treatments released less reducing sugar compared to the batch systems, the continuous flow process was more energy efficient. The reduction of particle size due to sonication was approximately proportional to the dissipated ultrasonic energy regardless of the type of system used. Scanning electron microscopy (SEM) images were also used to observe the disruption of corn particles after sonication. Overall, the study suggests that both batch and continuous ultrasonication enhanced saccharification yields and reduced the particle size of corn slurry. However, due to the large volume involve in full scale processes, an ultrasonic continuous system is recommended.  相似文献   

18.
This paper describes the ultrasound assisted dispersal of a low wt./vol.% copper nanopowder mixture and determines the optimum conditions for de-agglomeration. A commercially available powder was added to propan-2-ol and dispersed using a magnetic stirrer, a high frequency 850 kHz ultrasonic cell, a standard 40 kHz bath and a 20 kHz ultrasonic probe. The particle size of the powder was characterized using dynamic light scattering (DLS). Z-Average diameters (mean cluster size based on the intensity of scattered light) and intensity, volume and number size distributions were monitored as a function of time and energy input. Low frequency ultrasound was found to be more effective than high frequency ultrasound at de-agglomerating the powder and dispersion with a 20 kHz ultrasonic probe was found to be very effective at breaking apart large agglomerates containing weakly bound clusters of nanoparticles. In general, the breakage of nanoclusters was found to be a factor of ultrasonic intensity, the higher the intensity the greater the de-agglomeration and typically micron sized clusters were reduced to sub 100 nm particles in less than 30 min using optimum conditions. However, there came a point at which the forces generated by ultrasonic cavitation were either insufficient to overcome the cohesive bonds between smaller aggregates or at very high intensities decoupling between the tip and solution occurred. Absorption spectroscopy indicated a copper core structure with a thin oxide shell and the catalytic performance of this dispersion was demonstrated by drop coating onto substrates and subsequent electroless copper metallization. This relatively inexpensive catalytic suspension has the potential to replace precious metal based colloids used in electronics manufacturing.  相似文献   

19.
《Ultrasonics sonochemistry》2014,21(6):1982-1987
Sonophotolytic degradation of THMs mixture with different electrical energy ratio was carried out for efficient design of process. The total consumed electrical energy was fixed around 50 W, and five different energy conditions were applied. The maximum degradation rate showed in conditions of US:UV = 1:3 and US:UV = 0:4. This is because the photolytic degradation of bromate compounds is dominant degradation mechanism for THMs removal. However, the fastest degradation of total organic carbon was observed in a condition of US:UV = 1:3. Because hydrogen peroxide generated by sonication was effectively dissociated to hydroxyl radicals by ultraviolet, the concentration of hydroxyl radical was maintained high. This mechanism provided additional degradation of organics. This result was supported by comparison between the concentration of hydrogen peroxide sole and combined process. Consequently, the optimal energy ratio was US:UV = 1:3 for degradation of THMs in sonophotolytic process.  相似文献   

20.
In this work, the decolorization of azo dye Orange G (OG) in aqueous solution by aluminum powder enhanced by ultrasonic irradiation (AlP-UI) was investigated. The effects of various operating operational parameters such as the initial pH, initial OG concentration, AlP dosage, ultrasound power and added hydrogen peroxide (H2O2) concentration were studied. The results showed that the decolorization rate was enhanced when the aqueous OG was irradiated simultaneously by ultrasound in the AlP-acid systems. The decolorization rate decreased with the increase of both initial pH values of 2.0–4.0 and OG initial concentrations of 10–80 mg/L, increased with the ultrasound power enhancing from 500 to 900 W. An optimum value was reached at 2.0 g/L of the AlP dosage in the range of 0.5–2.5 g/L. The decolorization rate enhanced significantly by the addition of hydrogen peroxide in the range of 10–100 mM to AlP-UI system reached an optimum value of 0.1491 min−1. The decolorization of OG appears to involve primarily oxidative steps, the cleavage of NN bond, which were verificated by the intermediate products of OG under the optimal tested degradation system, aniline and 1-amino-2-naphthol-6,8-disulfonate detected by the LC–MS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号