首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We have investigated optical properties of single gold nanorods by using an apertured-type scanning near-field optical microscope. Near-field transmission spectrum of single gold nanorod shows several longitudinal surface plasmon resonances. Transmission images observed at these resonance wavelengths show oscillating pattern along the long axis of the nanorod. The number of oscillation increases with decrement of observing wavelength. These spatial characteristics were well reproduced by calculated local density-of-states maps and were attributed to spatial characteristics of plasmon modes inside the nanorods. Dispersion relation for plasmons in gold nanorods was obtained by plotting the resonance frequencies of the plasmon modes versus the wave vectors obtained from the transmission images.  相似文献   

2.
We investigated the two-photon-induced photoluminescence properties of single gold nanorods by scanning near-field spectroscopy. The process was found to be initiated by a sequential one-photon absorption for creating a pair of an electron and a hole in the sp and d bands. Photoluminescence is then radiated when the electron near the Fermi surface recombines with the hole near the X and L symmetry points. The polarization characteristics of emitted photons from the X and L regions were found to be different. These characteristics can be understood by the crystalline structure and the band structure of the gold nanorod. We found characteristic spatial oscillatory features along the long axis of the nanorods in photoluminescence excitation images. The images were well reproduced by density-of-states maps of the nanorods calculated with Green's dyadic method and were attributed to the spatial characteristics of the wave functions of the plasmon modes inside the nanorods.  相似文献   

3.
A novel, simple, and very efficient method to prepare hydrophobically modified gold particles is presented. Gold nanoparticles of different sizes and polydispersities were prepared. The diameter of the gold particles ranges from 5 to 37 nm. All systems were prepared in aqueous solution stabilized by citrate and afterwards transferred into an organic phase by using amphiphilic alkylamine ligands with different alkyl chain lengths. The chain length was varied between 8 and 18 alkyl groups. Depending on the particle size and the alkylamine, different transfer efficiencies were obtained. In some cases, the phase transfer has a yield of about 100%. After drying, the particles can be redispersed in different organic solvents. Characterization of the particles before and after transfer was performed by using UV/Vis spectroscopy, transmission electron microscopy (TEM), and small-angle X-ray scattering (SAXS) techniques. The effect of organic solvents with various refractive indices on the plasmon band position was investigated.  相似文献   

4.
5.
We report on the identification of surface plasmons in individual gold dumbbell-shaped nanoparticles (AuDBs), as well as AuDBs coated with silver. We use spatially resolved electron energy-loss spectroscopy in a scanning electron microscope, which allows us to map plasmon-energy and intensity spatial distributions. Two dominant plasmon resonances are experimentally resolved in both AuDBs and silver-coated AuDBs. The intensity of these features is peaked either at the tips or at the sides of the nanoparticles. We present boundary element method simulations in good agreement with the experiment, allowing us to elucidate the nature of such modes. While the lower-energy, tip-focused plasmon is of longitudinal character for all dumbbells under consideration, the second side-bound plasmon has a more involved symmetry, starting as a longitudinal quadrupole in homogeneous AuDBs and picking up transversal components when silver coating is added. The longitudinal dipolar mode energy is found to blue-shift upon coating with silver. We find that the substrate produces sizable shifts in the plasmons of silver-coated AuDBs. Our analysis portraits a complex plasmonic scenario in metal nanoparticles coated with silver, including a transition from the original homogeneous gold dumbbell plasmons to the modes of homogeneous silver rods. We believe that these findings can have potential application to plasmon engineering.  相似文献   

6.
Crooked gold nanorods (CGNRs) and gold network structures are fabricated using a simple electrochemical approach. The growth solution is prepared by surfactant solution as micelle templates with isopropanol (IPA) solvent. The shape of crooked nanorods and networks structure depend on the amount of added IPA solvent. To investigate the influence of isopropanol solvent on the CGNRs, the amount of IPA was varied in the range from 0.05 to 0.2 mL. It was found that the aspect ratios (gamma) of CGNRs were in the range from 1.06 to 1.46, and the UV-vis absorption measurement revealed a pronounced red-shift of the surface plasmon resonance (SPR) band from 532 to 560 nm. High-resolution transmission electron microscopy (HRTEM) showed that the formation of crooked nanorod structure was induced by aggregation of many small gold nuclei between the several large gold nanoparticles during growth, causing the small gold nuclei to link the gold nanoparticles. The CGNRs have a polycrystalline structure via the analysis from selected-area electron diffraction (SAED).  相似文献   

7.
Chiral phase-transfer catalyzed enantioselective alkylations of tert-butyl glycinate-benzophenone Schiff base were investigated in aqueous media without any organic solvent. Reactions in aqueous media smoothly proceeded to give the desired product in higher yield than under standard liquid-liquid biphasic conditions. In aqueous media the formation of benzophenone, which was caused by in situ hydrolysis of Schiff base, was depressed.  相似文献   

8.
The extinction spectra of five silver equilateral triangle plates with a fixed thickness of 10 nm and side lengths of 50, 100, 150, 200 ,and 250 nm, respectively, have been simulated by the discrete dipole approximation (DDA) method in which a geometric object of interest is meshed and represented by a lattice of spatial dipoles. Irradiated by an incident plane wave with a given propagation direction and polarization state, each triangle nanoplate presents three surface plasmon resonance (SPR) peaks in the range of 300 to 1200 nm. At a given peak, every complex spatial oscillatory vector derived by DDA (corresponding to a certain dipole in the meshed target) is orthogonally resolved into three basic oscillations. Each basic component can be subsequently expressed by two parameters, amplitude (P) and phase angle (varphi). The distributions of six such physical parameters of all the dipoles in the selected cross plane of the target are illustrated colorfully in plots as a graphic characterization and assignment of the SPR modes. The graphic method is applied to reveal the local fine features of SPR modes. And it provides direct evidence for classifying SPR peaks which belong to different triangle nanoplates and appear at different wavelengths. Three SPR modes are recognized graphically and the wavelengths of SPR peaks are found to have linear relationships with the side lengths of the triangle nanoplates.  相似文献   

9.
Recently, developed technique for separated analysis of bulk and contact resistance was applied for the investigation of polythiophene films electropolymerized in boron trifluoride diethylether. Kinetics of polymer resistance and for the first time of the contact resistance during polymer oxidation and reduction were characterized. Influence of electrochemically controlled oxidation state on the polymer bulk and the polymer/metal contact resistance was measured in aqueous and organic environment. Variation of the electrical potential from ?0.2 to 1.1?V vs. Ag/AgCl (sat) leads to an increase of the polymer conductivity for about three orders of magnitude and to a decrease of the contact resistance for about three orders of magnitude. The potential dependence of the two resistances was different, especially at high anodic potentials. In organic solution, the change of both resistances was more than six orders of magnitude. The results were compared with electrochemical and spectroelectrochemical data, a difference in the material behavior depending on the electrolyte solvent was observed. The influence of electrical potential on polymer resistance in aqueous solution was explained quantitatively by a three-state model with the values of oxidation potential +0.3 and +1.2?V.  相似文献   

10.

Recently, developed technique for separated analysis of bulk and contact resistance was applied for the investigation of polythiophene films electropolymerized in boron trifluoride diethylether. Kinetics of polymer resistance and for the first time of the contact resistance during polymer oxidation and reduction were characterized. Influence of electrochemically controlled oxidation state on the polymer bulk and the polymer/metal contact resistance was measured in aqueous and organic environment. Variation of the electrical potential from −0.2 to 1.1 V vs. Ag/AgCl (sat) leads to an increase of the polymer conductivity for about three orders of magnitude and to a decrease of the contact resistance for about three orders of magnitude. The potential dependence of the two resistances was different, especially at high anodic potentials. In organic solution, the change of both resistances was more than six orders of magnitude. The results were compared with electrochemical and spectroelectrochemical data, a difference in the material behavior depending on the electrolyte solvent was observed. The influence of electrical potential on polymer resistance in aqueous solution was explained quantitatively by a three-state model with the values of oxidation potential +0.3 and +1.2 V.

  相似文献   

11.
Citrate-capped gold nanoparticles (NPs) in aqueous solution were transferred directly into the organic solution mesitylene containing C-undecylcalix[4]-resorcinarene (C11-resorcinarene). C11-resorcinarene, which has long hydrophobic tails and phenolic hydroxyl groups, acted as both a phase-transfer and a capping agent. The C11-resorcinarene-capped gold particles could be isolated and dispersed in different organic solvents. Optical absorption spectra corresponding to surface plasmon resonance provided a broad band centered at 534 nm for C11-resorcinarene-capped gold NPs in mesitylene. High-resolution transmission electron micrograph images revealed that the average particle diameter of C11-resorcinarene-capped gold NPs is approximately 12 nm.  相似文献   

12.
The activity of mushroom tyrosinase towards a representative series of phenolic and diphenolic substrates structurally related to tyrosine has been investigated in a mixed solvent of 34.4% methanol-glycerol (7:1, v/v) and 65.6% (v/v) aqueous 50 mM Hepes buffer at pH 6.8 at various temperatures. The kinetic activation parameters controlling the enzymatic reactions and the thermodynamic parameters associated with the process of substrate binding to the enzyme active species have been deduced from the temperature variation of the kcat and KM parameters. The activation free energy is dominated by the enthalpic term, the value of which lies in the relatively narrow range of 61+/-9 kJ mol(-1) irrespective of substrate or reaction type (monophenolase or diphenolase). The activation entropies are small and generally negative and contribute no more than 10% to the activation free energy. The substrate binding parameters are characterized by large and negative enthalpy and entropy contributions, which are typically dictated by polar protein-substrate interactions. The substrate 4-hydroxyphenylpropionic acid exhibits a strikingly anomalous temperature dependence of the enzymatic oxidation rate, with deltaH(double dagger) approximately = 150 kJ mol(-1) and deltaS(double dagger) approximately = 280 J K(-1) mol(-1), due to the fact that it can competitively bind to the enzyme through the phenol group, like the other substrates, or the carboxylate group, like carboxylic acid inhibitors. A kinetic model that takes into account the dual substrate/inhibitor nature of this compound enables rationalization of this anomalous behavior.  相似文献   

13.
The scattering spectra of single gold nanorods with aspect ratios between 2 and 4 have been examined by dark field microscopy. The results show that the longitudinal plasmon resonance (electron oscillation along the long axis of the rod) broadens as the width of the rods decreases from 14 to 8 nm. This is attributed to electron surface scattering. Analysis of the data using gamma = gamma(bulk) + Anu(F)/L(eff), where L(eff) is the effective path length of the electrons and nu(F) is the Fermi velocity, allows us to determine a value for the surface scattering parameter of A = 0.3. Larger rods with widths of 19 and 30 nm were also examined. These samples also show spectral broadening, which is attributed to radiation damping. The relative strengths of the surface scattering and radiation damping effects are in excellent agreement with recent work on spherical gold nanoparticles by S?nnichsen et al., Phys. Rev. Lett., 2002, 88, 077402; and by Berciaud et al., Nano Lett., 2005, 5, 515.  相似文献   

14.
Geometries of the normal (N) and zwitterionic (Z) forms of glycine (gly) and their complexes gly.(H2O)n, n = 0–2, were fully optimized in gas phase and aqueous media, and transition states located between the corresponding N and Z forms. The geometry was also optimized and vibrational spectra calculated for the gly.(H2O)3 complex of Z glycine. Density functional theory at the B3LYP/AUG‐cc‐pVDZ level was employed for the geometry optimization calculations in gas phase and aqueous media while single point energy calculations were performed at the MP2/AUG‐cc‐pVDZ level in each case. Solvation in bulk water was treated using the polarizable continuum model (PCM). Zero‐point energy correction to total energy and thermal energy correction to enthalpy were obtained at the B3LYP/AUG‐cc‐pVDZ level of theory in both gas phase and bulk aqueous media and these corrections were also considered to be valid for the corresponding single point energy calculations performed at the MP2/AUG‐cc‐pVDZ level of theory. When geometries of the complexes of glycine with water molecules are optimized in aqueous media, the calculated properties are found to be appreciably modified with respect to those obtained by gas phase geometry optimization followed by solvation in aqueous media. For several vibrational frequencies, the agreement between the calculated and experimentally observed results is improved appreciably when both the specific and bulk solvent effects are considered in combination with full geometry optimization in aqueous media. For certain vibrational frequencies, mode assignments have also been modified. © 2007 Wiley Periodicals, Inc. Int J Quantum Chem, 2008  相似文献   

15.
Gold nanoparticles are very interesting because of their potential applications in microelectronics, optical devices, analytical detection schemes, and biomedicine. Though shape control has been achieved in several polar solvents, the capability to prepare organosols containing elongated gold nanoparticles has been very limited. In this work we report a novel, simplified method to produce long, thin gold nanowires in an organic solvent (oleylamine), which can be readily redispersed into nonpolar organic solvents. These wires have a characteristic flexible, hairy morphology arising from a small thickness (<2 nm) and an enormous length (up to several micrometers), with the possibility of adjusting the dimensions through modification of the growth conditions, in particular, the gold salt concentration. Despite their extreme aspect ratio, the wires are stable in solution for long periods of time but easily break when irradiated with high-energy electron beams during transmission electron microscopy.  相似文献   

16.
The recently proposed approach for representing and predicting surface tension of aqueous electrolyte solutions [Chem. Eng. Sci. 56 (2001) 2879] is extended to the prediction of interfacial tension between an organic solvent and aqueous multi-electrolyte solutions. The method of Meissner was adopted in all the calculations of activity coefficient of electrolytes. Model parameters were determined by correlating interfacial tensions reported in the literature for 11 single electrolytes, including 10 inorganic salts and one inorganic acid at isothermal conditions. The correlation yielded an overall average absolute percentage deviation (AAPD) of 0.42. Using these model parameters, the proposed approach was successfully applied to the prediction of interfacial tensions available in the literature for aqueous FeCl3–HCl, NiCl2–FeCl3–HCl and NiCl2–CoCl2–FeCl3–HCl solutions with an AAPD of 5.73.  相似文献   

17.
We investigated the influence of the reduction state of gold ions on the growth of gold nanocrystals in N,N-dimethyl formamide (DMF). While freshly prepared solutions of AuCl3 produce spherical nanocrystals, aged precursor solutions containing mainly Au+ ions and Au(0) atoms lead to various branched nanoparticles. Furthermore, we show that also the amount of the reducing and stabilisation agent tetra-n-octylammonium formate (TOAF) plays a decisive role on the shape of the nanocrystals, allowing us to grow triangular and cubic nanoparticles.  相似文献   

18.
The effect of high-intensity microwave radiation focused into a "hot spot" region in the vicinity of an electrode on electrochemical processes with and without coupled chemical reaction steps has been investigated in organic solvent media. First, the electrochemically reversible oxidation of ferrocene in acetonitrile and DMF is shown to be affected by microwave-induced thermal activation, resulting in increased currents and voltammetric wave shape effects. A FIDAP simulation investigation allows quantitative insight into the temperature distribution and concentration gradients at the electrode / solution interface. Next, the effect of intense microwave radiation on electroorganic reactions is considered for the case of ECE processes. Experimental data for the reduction of p-bromonitrobenzene, o-bromonitrobenzene, and m-iodonitrobenzene in DMF and acetonitrile are analyzed in terms of an electron transfer (E), followed by a chemical dehalogenation step (C), and finally followed by another electron-transfer step (E). The presence of the "hot spot" in the solution phase favors processes with high activation barriers.  相似文献   

19.
This paper reports the synthesis of dendrons containing a spermine unit at their focal point. The dendritic branching is based on l-lysine building blocks, and has terminal oligo(ethyleneglycol) units on the surface. As a consequence of the solubilising surface groups, these dendrons have high solubility in solvents with widely different polarities (e.g., dichloromethane and water). The protonated spermine unit at the focal point is an effective anion binding fragment and, as such, these dendrons are able to bind to polyanions. This paper demonstrates that polyanions can be bound in both dichloromethane (using a dye solubilisation assay) and in water (competitive ATP binding assay). In organic media the dendritic branching appears to have a pro-active effect on the solubilisation of the dye, with more dye being solubilised by higher generations of dendron. On the other hand, in water the degree of branching has no impact on the anion binding process. We propose that in this case, the spermine unit is effectively solvated by the bulk solvent and the dendritic branching does not need to play an active role in assisting solubility. Dendritic effects on anion binding have therefore been elucidated in different solvents. The dendritic branching plays a pro-active role in providing the anion binding unit with good solubility in apolar solvent media.  相似文献   

20.
We investigate the response dynamics of 1-hexanethiol-functionalized gold nanoparticle chemiresistors exposed to the analyte octane in aqueous solution. The dynamic response is studied as a function of the analyte-water flow velocity, the thickness of the gold nanoparticle film and the analyte concentration. A theoretical model for analyte limited mass-transport is used to model the analyte diffusion into the film, the partitioning of the analyte into the 1-hexanethiol capping layers and the subsequent swelling of the film. The degree of swelling is then used to calculate the increase of the electron tunnel resistance between adjacent nanoparticles which determines the resistance change of the film. In particular, the effect of the nonlinear relationship between resistance and swelling on the dynamic response is investigated at high analyte concentration. Good agreement between experiment and the theoretical model is achieved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号