首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Frankl and Füredi in [1] conjectured that the r-graph with m edges formed by taking the first m sets in the colex ordering of N(r) has the largest Lagrangian of all r-graphs with m edges. Denote this r-graph by C r,m and the Lagrangian of a hypergraph by λ(G). In this paper, we first show that if \(\leqslant m \leqslant \left( {\begin{array}{*{20}{c}}t \\ 3 \end{array}} \right)\), G is a left-compressed 3-graph with m edges and on vertex set [t], the triple with minimum colex ordering in G c is (t ? 2 ? i)(t ? 2)t, then λ(G) ≤ λ(C 3,m ). As an implication, the conjecture of Frankl and Füredi is true for \(\left( {\begin{array}{*{20}{c}}t \\ 3\end{array}} \right) - 6 \leqslant m \leqslant \left( {\begin{array}{*{20}{c}}t \\ 3\end{array}} \right)\).  相似文献   

2.
An r-coloring of a subset A of a finite abelian group G is called sum-free if it does not induce a monochromatic Schur triple, i.e., a triple of elements a, b, cA with a + b = c. We investigate κr,G, the maximum number of sum-free r-colorings admitted by subsets of G, and our results show a close relationship between κr,G and largest sum-free sets of G.Given a sufficiently large abelian group G of type I, i.e., |G| has a prime divisor q with q ≡ 2 (mod 3). For r = 2, 3 we show that a subset A ? G achieves κr,G if and only if A is a largest sum-free set of G. For even order G the result extends to r = 4, 5, where the phenomenon persists only if G has a unique largest sum-free set. On the contrary, if the largest sum-free set in G is not unique, then A attains κr,G if and only if it is the union of two largest sum-free sets (in case r = 4) and the union of three (“independent”) largest sum-free sets (in case r = 5).Our approach relies on the so called container method and can be extended to larger r in case G is of even order and contains sufficiently many largest sum-free sets.  相似文献   

3.
We introduce the notion of property (RD) for a locally compact, Hausdorff and r-discrete groupoid G, and show that the set S 2 l (G) of rapidly decreasing functions on G with respect to a continuous length function l is a dense spectral invariant and Fréchet *-subalgebra of the reduced groupoid C*-algebra C r * (G) of G when G has property (RD) with respect to l, so the K-theories of both algebras are isomorphic under inclusion. Each normalized cocycle c on G, together with an invariant probability measure on the unit space G 0 of G, gives rise to a canonical map τ c on the algebra C c (G) of complex continuous functions with compact support on G. We show that the map τ c can be extended continuously to S 2 l (G) and plays the same role as an n-trace on C r * (G) when G has property (RD) and c is of polynomial growth with respect to l, so the Connes’ fundament paring between the K-theory and the cyclic cohomology gives us the K-theory invariants on C r * (G).  相似文献   

4.
For a finite group G, the set of all prime divisors of |G| is denoted by π(G). P. Shumyatsky introduced the following conjecture, which was included in the “Kourovka Notebook” as Question 17.125: a finite group G always contains a pair of conjugate elements a and b such that π(G) = π(〈a, b〉). Denote by \(\mathfrak{Y}\) the class of all finite groups G such that π(H) ≠ π(G) for every maximal subgroup H in G. Shumyatsky’s conjecture is equivalent to the following conjecture: every group from \(\mathfrak{Y}\) is generated by two conjugate elements. Let \(\mathfrak{V}\) be the class of all finite groups in which every maximal subgroup is a Hall subgroup. It is clear that \(\mathfrak{V} \subseteq \mathfrak{Y}\). We prove that every group from \(\mathfrak{V}\) is generated by two conjugate elements. Thus, Shumyatsky’s conjecture is partially supported. In addition, we study some properties of a smallest order counterexample to Shumyatsky’s conjecture.  相似文献   

5.
Let a_1,..., a_9 be nonzero integers not of the same sign, and let b be an integer. Suppose that a_1,..., a_9 are pairwise coprime and a_1 + + a_9 ≡ b(mod 2). We apply the p-adic method of Davenport to find an explicit P = P(a_1,..., a_9, n) such that the cubic equation a_1p_1~3+ + a9p_9~3= b is solvable with p_j 《 P for all 1 ≤ j ≤ 9. It is proved that one can take P = max{|a_1|,..., |a_9|}~c+ |b|~(1/3) with c = 2. This improves upon the earlier result with c = 14 due to Liu(2013).  相似文献   

6.
Let R be a noncommutative prime ring of characteristic different from 2 with Utumi quotient ring U and extended centroid C, let F, G and H be three generalized derivations of R, I an ideal of R and f(x1,..., x n ) a multilinear polynomial over C which is not central valued on R. If
$$F(f(r))G(f(r)) = H(f(r)^2 )$$
for all r = (r1,..., r n ) ∈ I n , then one of the following conditions holds:
  1. (1)
    there exist aC and bU such that F(x) = ax, G(x) = xb and H(x) = xab for all xR
     
  2. (2)
    there exist a, bU such that F(x) = xa, G(x) = bx and H(x) = abx for all xR, with abC
     
  3. (3)
    there exist bC and aU such that F(x) = ax, G(x) = bx and H(x) = abx for all xR
     
  4. (4)
    f(x1,..., x n )2 is central valued on R and one of the following conditions holds
    1. (a)
      there exist a, b, p, p’ ∈ U such that F(x) = ax, G(x) = xb and H(x) = px + xp’ for all xR, with ab = p + p
       
    2. (b)
      there exist a, b, p, p’ ∈ U such that F(x) = xa, G(x) = bx and H(x) = px + xp’ for all xR, with p + p’ = ab ∈ C.
       
     
  相似文献   

7.
Some researchers have proved that ádám’s conjecture is wrong. However, under special conditions, it is right. Let Zn be a cyclic group of order n and Cn(S) be the circulant digraph of Zn with respect to S ? Zn\{0}. In the literature, some people have used a spectral method to solve the isomorphism for the circulants of prime-power order. In this paper, we also use the spectral method to characterize the circulants of order paqbwc(where p, q and w are all distinct primes), and to make ádám’s conjecture right.  相似文献   

8.
Let A be a von Neumann algebra with no central abelian projections. It is proved that if an additive map δ :A → A satisfies δ([[a, b], c]) = [[δ(a), b], c] + [[a, δ(b)], c] +[[a, b], δ(c)] for any a, b, c∈ A with ab = 0(resp. ab = P, where P is a fixed nontrivial projection in A), then there exist an additive derivation d from A into itself and an additive map f :A → ZA vanishing at every second commutator [[a, b], c] with ab = 0(resp.ab = P) such that δ(a) = d(a) + f(a) for any a∈ A.  相似文献   

9.
The limit probabilities of the first-order properties of a random graph in the Erd?s–Rényi model G(n, n?α), α ∈ (0, 1), are studied. A random graph G(n, n?α) is said to obey the zero-one k-law if, given any property expressed by a formula of quantifier depth at most k, the probability of this property tends to either 0 or 1. As is known, for α = 1? 1/(2k?1 + a/b), where a > 2k?1, the zero-one k-law holds. Moreover, this law does not hold for b = 1 and a ≤ 2k?1 ? 2. It is proved that the k-law also fails for b > 1 and a ≤ 2k?1 ? (b + 1)2.  相似文献   

10.
For a graph G, we denote by p(G) and c(G) the number of vertices of a longest path and a longest cycle in G, respectively. For a vertex v in G, id(v) denotes the implicit degree of v. In this paper, we obtain that if G is a 2-connected graph on n vertices such that the implicit degree sum of any three independent vertices is at least n + 1, then either G contains a hamiltonian path, or c(G) ≥ p(G) ? 1.  相似文献   

11.
We denote by Gn the group of the upper unitriangular matrices over Fq, the finite field with q = pt elements, and r(Gn) the number of conjugacy classes of Gn. In this paper, we obtain the value of r(Gn) modulo (q2 -1)(q -1). We prove the following equalities  相似文献   

12.
For a finite group G denote by N(G) the set of conjugacy class sizes of G. In 1980s, J.G.Thompson posed the following conjecture: If L is a finite nonabelian simple group, G is a finite group with trivial center and N(G) = N(L), then G ? L. We prove this conjecture for an infinite class of simple groups. Let p be an odd prime. We show that every finite group G with the property Z(G) = 1 and N(G) = N(A i ) is necessarily isomorphic to A i , where i ∈ {2p, 2p + 1}.  相似文献   

13.
Let G and H be two graphs. We say that G induces H if G has an induced subgraph isomorphic to H: A. Gyárfás and D. Sumner, independently, conjectured that, for every tree T. there exists a function f T ; called binding function, depending only on T with the property that every graph G with chromatic number f T (ω(G)) induces T. A. Gyárfás, E. Szemerédi and Z. Tuza confirmed the conjecture for all trees of radius two on triangle-free graphs, and H. Kierstead and S. Penrice generalized the approach and the conclusion of A. Gyárfás et al. onto general graphs. A. Scott proved an interesting topological version of this conjecture asserting that for every integer k and every tree T of radius r, every graph G with ω(G) ? k and sufficient large chromatic number induces a subdivision of T of which each edge is subdivided at most O(14 r-1(r - 1)!) times. We extend the approach of A. Gyárfás and present a binding function for trees obtained by identifying one end of a path and the center of a star. We also improve A. Scott's upper bound by modifying his subtree structure and partition technique, and show that for every integer k and every tree T of radius r, every graph with ω(G) ? k and sufficient large chromatic number induces a subdivision of T of which each edge is subdivided at most O(6 r?2) times.  相似文献   

14.
Let G be a finite group and let Γ(G) be the prime graph of G. Assume p prime. We determine the finite groups G such that Γ(G) = Γ(PSL(2, p 2)) and prove that if p ≠ 2, 3, 7 is a prime then k(Γ(PSL(2, p 2))) = 2. We infer that if G is a finite group satisfying |G| = |PSL(2, p 2)| and Γ(G) = Γ(PSL(2, p 2)) then G ? PSL(2, p 2). This enables us to give new proofs for some theorems; e.g., a conjecture of W. Shi and J. Bi. Some applications are also considered of this result to the problem of recognition of finite groups by element orders.  相似文献   

15.
Given any integers a, b, c, and d with a > 1, c ≥ 0, ba + c, and db + c, the notion of (a, b, c, d)-Koszul algebra is introduced, which is another class of standard graded algebras with “nonpure” resolutions, and includes many Artin-Schelter regular algebras of low global dimension as specific examples. Some basic properties of (a, b, c, d)-Koszul algebras/modules are given, and several criteria for a standard graded algebra to be (a, b, c, d)-Koszul are provided.  相似文献   

16.
We find the greatest value α 1 and α 2, and the least values β 1 and β 2, such that the double inequalities α 1 S(a,b)?+?(1???α 1) A(a,b)?T(a,b)?β 1 S(a,b)?+?(1???β 1) A(a,b) and \(S^{\alpha_{2}}(a,b)A^{1-\alpha_{2}}(a,b)< T(a,b)< S^{\beta_{2}}(a,b)A^{1-\beta_{2}}(a,b)\) hold for all a,b?>?0 with a?≠?b. As applications, we get two new bounds for the complete elliptic integral of the second kind in terms of elementary functions. Here, S(a,b)?=?[(a 2?+?b 2)/2]1/2, A(a,b)?=?(a?+?b)/2, and \(T(a,b)=\frac{2}{\pi}\int\limits_{0}^{{\pi}/{2}}\sqrt{a^2{\cos^2{\theta}}+b^2{\sin^2{\theta}}}{\rm d}\theta\) denote the root-square, arithmetic, and Toader means of two positive numbers a and b, respectively.  相似文献   

17.
Let H 2 be Sweedler’s 4-dimensional Hopf algebra and r(H 2) be the corresponding Green ring of H 2. In this paper, we investigate the automorphism groups of Green ring r(H 2) and Green algebra F(H 2) = r(H 2)?? F, where F is a field, whose characteristics is not equal to 2. We prove that the automorphism group of r(H 2) is isomorphic to K 4, where K 4 is the Klein group, and the automorphism group of F(H 2) is the semidirect product of ?2 and G, where G = F {1/2} with multiplication given by a · b = 1? a ? b + 2ab.  相似文献   

18.
Let G be a finite group, and let N(G) be the set of conjugacy class sizes of G. By Thompson’s conjecture, if L is a finite non-abelian simple group, G is a finite group with a trivial center, and N(G) = N(L), then L and G are isomorphic. Recently, Chen et al. contributed interestingly to Thompson’s conjecture under a weak condition. They only used the group order and one or two special conjugacy class sizes of simple groups and characterized successfully sporadic simple groups (see Li’s PhD dissertation). In this article, we investigate validity of Thompson’s conjecture under a weak condition for the alternating groups of degrees p+1 and p+2, where p is a prime number. This work implies that Thompson’s conjecture holds for the alternating groups of degree p + 1 and p + 2.  相似文献   

19.
Let d ≥ 1 and Z be a subordinate Brownian motion on R~d with infinitesimal generator ? + ψ(?),where ψ is the Laplace exponent of a one-dimensional non-decreasing L′evy process(called subordinator). We establish the existence and uniqueness of fundamental solution(also called heat kernel) pb(t, x, y) for non-local operator L~b= ? + ψ(?) + b ?, where Rb is an Rd-valued function in Kato class K_(d,1). We show that p~b(t, x, y)is jointly continuous and derive its sharp two-sided estimates. The kernel pb(t, x, y) determines a conservative Feller process X. We further show that the law of X is the unique solution of the martingale problem for(L~b, C_c~∞(R~d)) and X is a weak solution of Xt = X0+ Zt + integral from n=0 to t(b(Xs)ds, t ≥ 0).Moreover, we prove that the above stochastic differential equation has a unique weak solution.  相似文献   

20.
An r-acyclic edge chromatic number of a graph G, denoted by a r r(G), is the minimum number of colors used to produce an edge coloring of the graph such that adjacent edges receive different colors and every cycle C has at least min {|C|, r} colors. We prove that a r r(G) ≤ (4r + 1)Δ(G), when the girth of the graph G equals to max{50, Δ(G)} and 4 ≤ r ≤ 7. If we relax the restriction of the girth to max {220, Δ(G)}, the upper bound of a r r(G) is not larger than (2r + 5)Δ(G) with 4 ≤ r ≤ 10.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号