首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 159 毫秒
1.
A sensitive and rapid liquid chromatography–tandem mass spectrometry (LC‐MS/MS) method was developed and validated for determination of bakkenolide D (BD), which was further applied to assess the pharmacokinetics of BD. In the LC‐MS/MS method, the multiple reaction monitoring mode was used and columbianadin was chosen as internal standard. The method was validated over the range of 1–800 ng/mL with a determination coefficient >0.999. The lower limit of quantification was 1 ng/mL in plasma. The intra‐ and inter‐day accuracies for BD were 91–113 and 100–104%, respectively, and the inter‐day precision was <15%. After a single oral dose of 10 mg/kg of BD, the mean peak plasma concentration of BD was 10.1 ± 9.8 ng/mL at 2 h. The area under the plasma concentration–time curve (AUC0–24 h) was 72.1 ± 8.59 h ng/mL, and the elimination half‐life (T1/2) was 11.8 ± 1.9 h. In case of intravenous administration of BD at a dosage of 1 mg/kg, the AUC0–24 h was 281 ± 98.4 h?ng/mL, and the T1/2 was 8.79 ± 0.63 h. Based on these results, the oral bioavailability of BD in rats at 10 mg/kg is 2.57%. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
A liquid chromatographic–electrospray ionization–time‐of‐flight/mass spectrometric (LC‐ESI‐TOF/MS) method was developed and applied for the determination of WKYMVm peptide in rat plasma to support preclinical pharmacokinetics studies. The method consisted of micro‐elution solid‐phase extraction (SPE) for sample preparation and LC‐ESI‐TOF/MS in the positive ion mode for analysis. Phenanthroline (10 mg/mL) was added to rat blood immediately for plasma preparation followed by addition of trace amount of 2 m hydrogen chloride to plasma before SPE for stability of WKYMVm peptide. Then sample preparation using micro‐elution SPE was performed with verapamil as an internal standard. A quadratic regression (weighted 1/concentration2), with the equation y = ax2 + bx + c was used to fit calibration curves over the concentration range of 3.02–2200 ng/mL for WKYMVm peptide. The quantification run met the acceptance criteria of ±25% accuracy and precision values. For quality control samples at 15, 165 and 1820 ng/mL from the quantification experiment, the within‐run and the between‐run accuracy ranged from 92.5 to 123.4% with precision values ≤15.1% for WKYMVm peptide from the nominal values. This novel LC‐ESI‐TOF/MS method was successfully applied to evaluate the pharmacokinetics of WKYMVm peptide in rat plasma.  相似文献   

3.
This report describes the development and validation of an LC‐MS/MS method for the quantitative determination of glyburide (GLB), its five metabolites (M1, M2a, M2b, M3 and M4) and metformin (MET) in plasma and urine of pregnant patients under treatment with a combination of the two medications. The extraction recovery of the analytes from plasma samples was 87–99%, and that from urine samples was 85–95%. The differences in retention times among the analytes and the wide range of the concentrations of the medications and their metabolites in plasma and urine patient samples required the development of three LC methods. The lower limit of quantitation (LLOQ) of the analytes in plasma samples was as follows: GLB, 1.02 ng/mL; its five metabolites, 0.100–0.113 ng/mL; and MET, 4.95 ng/mL. The LLOQ in urine samples was 0.0594 ng/mL for GLB, 0.984–1.02 ng/mL for its five metabolites and 30.0 µg/mL for MET. The relative deviation of this method was <14% for intra‐day and inter‐day assays in plasma and urine samples, and the accuracy was 86–114% in plasma, and 94–105% in urine. The method described in this report was successfully utilized for determining the concentrations of the two medications in patient plasma and urine. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
A sensitive liquid chromatography coupled with tandem mass spectrometry (LC–MS/MS) method was developed and validated for the simultaneous determination of ramelteon and its active metabolite M‐II in human plasma. After extraction from 200 μL of plasma by protein precipitation, the analytes and internal standard (IS) diazepam were separated on a Hedera ODS‐2 (5 μm, 150 × 2.1 mm) column with a mobile phase consisted of methanol–0.1% formic acid in 10 mm ammonium acetate solution (85:15, v/v) delivered at a flow rate of 0.5 mL/min. Mass spectrometric detection was operated in positive multiple reaction monitoring mode. The calibration curves were linear over the concentration range of 0.0500–30.0 ng/mL for ramelteon and 1.00–250 ng/mL for M‐II, respectively. This method was successfully applied to a clinical pharmacokinetic study in healthy Chinese volunteers after a single oral administration of ramelteon. The maximum plasma concentration (Cmax), the time to the Cmax and the elimination half‐life for ramelteon were 4.50 ± 4.64ng/mL, 0.8 ± 0.4h and 1.0 ± 0.9 h, respectively, and for M‐II were 136 ± 36 ng/mL, 1.1 ± 0.5 h, 2.1 ± 0.4 h, respectively.  相似文献   

5.
Furanodiene, a sesquiterpene component extracted from the essential oil of the rhizome of Curcuma wenyujin Y.H. Chen et C. Ling (Wen Ezhu), is widely used in traditional Chinese medicine. A sensitive analytical method was established and validated for furanodiene in rat plasma, which was further applied to assess the pharmacokinetics of furanodiene in rats receiving a single dose of furanodiene. Liquid chromatography tandem mass spectrometry (LC/MS/MS) in multiple reaction monitoring mode was used in the method and costundide was used as internal standard. A simple protein precipitation based on methanol was employed. The simple sample cleanup increased the throughput of the method substantially. The method was validated over the range of 1–1000 ng/mL with a correlation coefficient >0.99. The lower limit of quantification was 1 ng/mL for furanodiene in plasma. Intra‐ and inter‐day accuracies for furanodiene were 88–115 and 102–107%, and the inter‐day precision less than 14.4%. After a single oral dose of 10 mg/kg of furanodiene, the mean peak plasma concentration of furanodiene was 66.9 ± 23.4 ng/mL at 1 h, the area under the plasma concentration–time curve (AUC0–10 h) was 220 ± 47.8 h ng/mL, and the elimination half‐life was 1.53 ± 0.06 h. After an intravenous adminstration of furanodiene at a dosage of 5 mg/kg, the area under the plasma concentration–time curve was 225 ± 76.1 h?ng/mL, and the elimination half‐life was 2.40 ± 1.18 h. Based on this result, the oral bioavailability of furanodiene in rats at 10 mg/kg is 49.0%. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
A sensitive and specific method based on liquid chromatography‐tandem mass spectrometry using electrospray ionization (LC‐ESI‐MS/MS) has been developed for the determination of Schisandrin and Schisandrin B in rat plasma. A 100 μL plasma sample was extracted by methyl tert‐butyl ether after spiking the samples with nimodipine (internal standard) and performed on an XTerra®MS‐C18 column (150 mm × 2.1 mm, 3.5 μm) with the mobile phase of acetonitrile–water–formic acid (80:20:0.2, v/v) at a flow rate of 0.2 mL/min in a run time of 8.5 min. The lower limit of quantification of the method was 40 ng/mL for Schisandrin and 20 ng/mL for Schisandrin B. The method showed reproducibility with intra‐day and inter‐day precision of less than 13.8% RSD, as well as accuracy, with inter‐ and intra‐assay accuracies between 93.5 and 107.2%. Finally, the LC‐ESI‐MS/MS method was successfully applied to study the pharmacokinetics of Schisandrin and Schisandrin B in rats after administration of Wurenchun commercial formulations to rats. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
A novel, specific and sensitive ultraperformance liquid chromatography tandem mass spectrometry (UPLC–MS/MS) method was developed for the simultaneous determination of quinapril and its active metabolite quinaprilat in human plasma. The method involves a simple, one‐step extraction procedure coupled with an Acquity UPLC? BEH C18 column (100 × 2.1 mm, i.d., 1.7 µm) with isocratic elution at a flow‐rate of 0.2 mL/min and lisinopril as the internal standard. Detection was performed on a triple‐quadrupole tandem mass spectrometer in multiple reaction monitoring mode via electrospray ionization. Using 250 µL plasma, the methods were validated over the concentration range 5.010–500.374 ng/mL for quinapril and 10.012–1000 ng/mL for quinaprilat, with a lower limit of quantification of 5.010 ng/mL for quinapril and 10.012 ng/mL for quinaprilat. The intra‐ and inter‐day precision and accuracy were within 10.0%. The recovery was 85.8, 62.6 and 61.3% for quinapril, quinaprilat and lisinopril, respectively. Total run time was 3.0 min only. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
A sensitive and simple liquid chromatography–tandem mass spectrometric (HPLC‐MS/MS) method for the determination of corilagin in rat plasma has been developed. Samples were prepared with protein precipitation method and analyzed with a triple quadrupole tandem mass spectrometer. We employed negative electrospray ionization as the ionization source and the analytes were detected in multiple reaction monitoring mode. Separation was achieved on a C8 column eluted with mobile phase consisting of methanol–0.1% formic acid in a gradient mode at the flow rate of 0.3 mL/min. The total run time was 7.0 min.This method was proved to have good linearity in the concentration range of 2.5–1000.0 ng/mL. The lower limit of quantification of corilagin was 2.5 ng/mL. The intra‐ and inter‐day relative standard deviationa across three validation runs for four concentration levels were both <9.8%. The relative error was within ±6.0%. This assay offers advantages in terms of expediency and suitability for the analysis of corilagin in rat plasma. The practical utility of this new HPLC‐MS/MS method was confirmed in pilot plasma concentration studies in rats following oral administration. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
A rapid, simple, sensitive and specific LC‐MS/MS method has been developed and validated for the simultaneous estimation of atorvastatin (ATO), amlodipine (AML), ramipril (RAM) and benazepril (BEN) using nevirapine as an internal standard (IS). The API‐4000 LC‐MS/MS was operated under the multiple‐reaction monitoring mode using electrospray ionization. Analytes and IS were extracted from plasma by simple liquid–liquid extraction technique using ethyl acetate. The reconstituted samples were chromatographed on C18 column by pumping 0.1% formic acid–acetonitrile (15:85, v/v) at a flow rate of 1 mL/min. A detailed validation of the method was performed as per the FDA guidelines and the standard curves were found to be linear in the range of 0.26–210 ng/mL for ATO; 0.05–20.5 ng/mL for AML; 0.25–208 ng/mL for RAM and 0.74–607 ng/mL for BEN with mean correlation coefficient of ≥0.99 for each analyte. The intra‐day and inter‐day precision and accuracy results were well with in the acceptable limits. A run time of 2.5 min for each sample made it possible to analyze more than 400 human plasma samples per day. The developed assay method was successfully applied to a pharmacokinetic study in human male volunteers. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
A highly sensitive, specific and fully validated LC‐MS/MS method as per general practices of industry has been developed for estimation of lamotrigine (LAM) with 100 μL of human plasma using flucanozole as an internal standard (IS). The API‐4000 LC‐MS/MS was operated under the multiple reaction‐monitoring mode using electrospray ionization. A simple liquid–liquid extraction process was used to extract LAM and IS from human plasma. The total run time was 2.0 min and the elution of LAM and IS occurred at 1.25 and 1.45 min; this was achieved with a mobile phase consisting of 0.1% formic acid–methanol (20:40:40, v/v) at a flow rate of 0.50 mL/min on a Discovery CN (50 × 4.6 mm, 5 µm) column. The developed method was validated in human plasma with a lower limit of quantitation of 0.1 ng/mL for LAM. A linear response function was established for the range of concentrations 0.1–1500 ng/mL (r > 0.998) for LAM. The intra‐ and inter‐day precision values for LAM met the acceptance as per Food and Drug Administration guidelines. LAM was stable in the set of stability studies, viz. bench‐top, autosampler and freeze–thaw cycles. The developed assay method was applied to an oral bioequivalence study in humans. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
A rapid, simple, selective and sensitive LC‐MS/MS method was developed for the determination of curculigoside in rat plasma. The analytical procedure involves extraction of curculigoside and syringin (internal standard, IS) from rat plasma with a one‐step extraction method by protein precipitation. The chromatographic resolution was performed on an Agilent XDB‐C18 column (4.6 × 50 mm, 5 µm) using an isocratic mobile phase of methanol with 0.1% formic acid and H2O with 0.1% formic acid (45:55, v/v) at a flow rate of 0.35 mL/min with a total run time of 2.0 min. The assay was achieved under the multiple‐reaction monitoring mode using positive electrospray ionization. Method validation was performed according to US Food and Drug Administration guidelines and the results met the acceptance criteria. The calibration curve was linear over 4.00–4000 ng/mL (R = 0.9984) for curculigoside with a lower limit of quantification of 4.00 ng/mL in rat plasma. The intra‐ and inter‐day precisions and accuracies were 3.5–4.6 and 0.7–9.1%, in rat plasma, respectively. The validated LC‐MS/MS method was successfully applied to a pharmacokinetic study of curculigoside in rats after a single intravenous and oral administration of 3.2 and 32 mg/kg. The absolute bioavailability of curculigoside after oral administration was 1.27%. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
Aripiprazole is an important antipsychotic drug. A simple, sensitive and rapid ultra‐performance liquid chromatography/electrospray ionization tandem mass spectrometry (UPLC‐ESI‐MS/MS) method was developed and validated for the simultaneous quantification of this compound in rat plasma and brain homogenate. The analyte was extracted from rat plasma and brain homogenate using a weak cation exchange mixed‐mode resin‐based solid phase extraction. The compound was separated on an Agilent Eclipse Plus C18 (2.1 × 50 mm, 1.8 µm) column using a mobile phase of (A) 0.1% formic acid aqueous and (B) acetonitrile with gradient elution. The analyte was detected in positive ion mode using multiple reaction monitoring. The method was validated and the specificity, linearity, limit of quantitation (LOQ), precision, accuracy, recoveries and stability were determined. The LOQ was 0.5 ng/mL for aripiprazole in plasma and 1.5 ng/g in brain tissue. The MS response was linear over the concentration range 0.5–100 ng/mL for aripiprazole in plasma and 1.5–300 ng/g in brain tissue. The precision and accuracy for intra‐day and inter‐day were better than 14%. The relative and absolute recoveries were above 72% and the matrix effects were low. This validated method was successfully used to quantify the rat plasma and brain tissue concentrations of the analyte following chronic treatment with aripiprazole. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
A sensitive and accurate HPLC‐MS/MS method was developed for the simultaneous determination of dextromethorphan, dextrorphan and chlorphenamine in human plasma. Three analytes were extracted from plasma by liquid–liquid extraction using ethyl acetate and separated on a Kromasil 60‐5CN column (3 µm, 2.1 × 150 mm) with mobile phase of acetonitrile–water (containing 0.1% formic acid; 50:50, v/v) at a flow rate of 0.2 mL/min. Quantification was performed on a triple quadrupole tandem mass spectrometer in multiple reaction monitoring mode using positive electrospray ionization. The calibration curve was linear over the range of 0.01–5 ng/mL for dextromethorphan, 0.02–5 ng/mL for dextrorphan and 0.025–20 ng/mL for chlorphenamine. The lower limits of quantification for dextromethorphan, dextrorphan and chlorphenamine were 0.01, 0.02 and 0.025 ng/mL, respectively. The intra‐ and inter‐day precisions were within 11% and accuracies were in the range of 92.9–102.5%. All analytes were proved to be stable during sample storage, preparation and analytic procedures. This method was first applied to the pharmacokinetic study in healthy Chinese volunteers after a single oral dose of the formulation containing dextromethorphan hydrobromide (18 mg) and chlorpheniramine malaeate (8 mg). Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
A liquid chromatography–tandem mass spectrometric (LC‐MS/MS) method was developed and validated for the determination of GDC‐0152 in human plasma to support clinical development. The method consisted of a solid‐phase extraction for sample preparation and LC‐MS/MS analysis in the positive ion mode using TurboIonSprayTM for analysis. d7‐GDC‐0152 was used as the internal standard. A linear regression (weighted 1/concentration2) was used to fit calibration curves over the concentration range of 0.02–10.0 ng/mL for GDC‐0152. There were no endogenous interference components in the blank human plasma tested. The accuracy at the lower limit of quantitation was 99.3% with a precision (%CV) of 13.9%. For quality control samples at 0.0600, 2.00 and 8.00 ng/mL, the between‐run %CV was ≤8.64. Between‐run percentage accuracy ranged from 98.2 to 99.6%. GDC‐0152 was stable in human plasma for 363 days at ?20°C and for 659 days at ?70°C storage. GDC‐0152 was stable in human plasma at room temperature for up to 25 h and through three freeze–thaw cycles. In whole blood, GDC‐0152 was stable for 12 h at 4°C and at ambient temperature. This validated LC‐MS/MS method for determination of GDC‐0152 was used to support clinical studies. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
A simple, specific and sensitive LC‐MS/MS method was developed and validated for the simultaneous determination of metoprolol (MET), α‐hydroxymetoprolol (HMT) and O‐desmethylmetoprolol (DMT) in rat plasma. The plasma samples were prepared by protein precipitation, then the separation of the analytes was performed on an Agilent HC‐C18 column (4.6 × 250 mm, 5 µm) at a flow rate of 1.0 mL/min, and post‐column splitting (1:4) was used to give optimal interface flow rates (0.2 mL/min) for MS detection; the total run time was 8.5 min. Mass spectrometric detection was achieved using a triple‐quadrupole mass spectrometer equipped with an electrospray source interface in positive ionization mode. The method was fully validated in terms of selectivity, linearity, accuracy, precision, stability, matrix effect and recovery over a concentration range of 3.42–7000 ng/mL for MET, 2.05‐4200 ng/mL for HMT and 1.95‐4000 ng/mL for DMT. The analytical method was successfully applied to herb–drug interaction study of MET and breviscapine after administration of breviscapine (12.5 mg/kg) and MET (40 mg/kg). The results suggested that breviscapine have negligible effect on pharmacokinetics of MET in rats; the information may be beneficial for the application of breviscapine in combination with MET in clinical therapy. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
A rapid, specific and sensitive liquid chromatography tandem mass spectrometry (LC–MS/MS) method was developed for the determination of penciclovir in human plasma. The method involved simple, one‐step SPE procedure coupled with a C18, 75 × 4.mm, 3µm column with a flow‐rate of 0.5 mL/min, and acyclovir was used as the internal standard. The Quattro Micro mass spectrometry was operated under the multiple reaction‐monitoring mode using the electrospray ionization technique. Using 250 µL plasma, the methods were validated over the concentration range 52.555–6626.181 ng/mL, with a lower limit of quantification of 52.55 ng/mL. The intra‐ and inter‐day precision and accuracy values were found to be within the assay variability limits as per the FDA guidelines. The developed assay method was applied to a clinical pharmacokinetic study in human volunteers. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
A sensitive and specific liquid chromatography–electrospray ionization–tandem mass spectrometric (LC‐ESI‐MS/MS) method was developed and validated to simultaneously quantify 11 active compounds (coptisine, jatrorrhizine, berberine, palmatine, baicalin, baicalein, wogonoside, wogonin, rhein, emodin and aloeemodin) from Xiexin decoction (XXD) in rat plasma. Plasma samples extracted by a single‐step protein precipitation procedure were separated using the gradient mode on a Dikma ODS‐C18 column. Selected reaction monitoring scanning was employed for quantification with switching electrospray ion source polarity between positive and negative modes in a single run. Calibration curves offered satisfactory linearity (r > 0.995) at linear range of 0.47–60 ng/mL for coptisine, jatrorrhizine, berberine and palmatine, 15–1930 ng/mL for baicalin, 20–2560 ng/mL for baicalein, 14–1790 ng/mL for wogonoside, 0.57–72.8 ng/mL for wogonin, 10–1280 ng/mL for rhein, 0.6–76.8 ng/mL for emodin and 3.0–384 ng/mL for aloeemodin. The intra‐ and interday precisions were less than 10.2% in terms of relative standard deviation (RSD), and the accuracies were within ±10.84% in terms of relative error (RE). It was successfully applied to the evaluation of pharmacokinetics after single oral doses of XXD were administered to rats. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
We developed and validated an accurate and sensitive LC–MS/MS method for the simultaneous quantitation of ginsenoside Rg3 and Rh2 epimers (R‐Rg3, S‐Rg3, R‐Rh2, and S‐Rh2) in rat plasma. Analytes were extracted from 0.1 mL aliquots of rat plasma by liquid–liquid extraction, using 2 mL of ethyl acetate. In this assay, dioscin (500 ng/mL) was used as an internal standard. Chromatographic separation was conducted using an Acclaim RSLC C18 column (150 × 2.1 mm, 2.2 μm) at 40°C, with a gradient mobile phase consisting of 0.1% formic acid in distilled water and in acetonitrile, a flow rate of 0.35 mL/min, and a total run time of 20 min. Detection and quantification were performed using a mass spectrometer in selected reaction‐monitoring mode with negative electrospray ionization at m/z 783.4 → 161.1 for R‐Rg3 and S‐Rg3, m/z 621.3 → 161.1 for R‐Rh2 and S‐Rh2, and m/z 867.2 → 761.5 for the internal standard. For R‐Rg3 and S‐Rg3, the lower limit of quantification was 5 ng/mL, with a linear range up to 500 ng/mL; for R‐Rh2 and S‐Rh2, the lower limit of quantification was 150 ng/mL, with a linear range up to 6000 ng/mL. The coefficient of variation for assay precision was less than 10.5%, with an accuracy of 86.4–112%. No relevant cross‐talk or matrix effect was observed. The method was successfully applied to a pharmacokinetic study after oral administration of 400 mg/kg and 2000 mg/kg of BST204, a fermented ginseng extract, to rats. We found that the S epimers exhibited significantly higher plasma concentrations and area under curve values for both Rg3 and Rh2. This is the first report on the separation and simultaneous quantification of R‐Rg3, S‐Rg3, R‐Rh2, and S‐Rh2 in rat plasma by LC‐MS/MS. The method should be useful in the clinical use of ginseng or its derivatives.  相似文献   

19.
A simple, rapid and sensitive LC‐MS/MS method was developed and validated for the determination of free quercetin in rat plasma, using fisetin as internal standard. The detection was performed by negative ion electrospray ionization under selected reaction monitoring. Chromatographic separation (isocratic elution) was carried out using acetonitrile–10 m m ammonium formate (80:20, v/v) with 0.1% v/v formic acid. The lower limit of quantification (4.928 ng/mL) provided high sensitivity for the detection of quercetin in rat plasma. The linearity range was from 5 to 2000 ng/mL. Intra‐ and inter‐day variability (RSD) of quercetin extraction from rat plasma was <4.19 and 1.37% with accuracies of 98.77 and 99.67%. The method developed was successfully applied for estimating free quercetin in rat plasma, after oral administration of quercetin‐loaded biodegradable nanoparticles (QLN) and quercetin suspension. QLN (Cmax, 1277.34 ± 216.67 ng/mL; AUC, 17,458.25 ± 3152.95 ng hr/mL) showed a 5.38‐fold increase in relative bioavailability as compared with quercetin suspension (Cmax, 369.2 ± 108.07 ng/mL; AUC, 3276.92 ± 396.67 ng hr/mL). Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
A specific and sensitive LC‐MS/MS assay was developed to simultaneously quantify three structurally similar flavonoid glycosides – hyperin, reynoutrin and guaijaverin – in mouse plasma. Biosamples were prepared by solid‐phase extraction. Isocratic chromatographic separation was performed on an AichromBond‐AQ C18 column (250 × 2.1 mm, 5 μm) with methanol–acetonitrile–water–formic acid (20:25:55:0.1) as the mobile phase. Detection of hyperin, reynoutrin, guaijaverin and internal standard [luteolin‐7‐Oβ‐d ‐apiofuranosyl‐(1 → 6)‐β‐d ‐glucopyranoside] was achieved by ESI‐MS/MS in the negative ion mode using m/z 463 → m/z 300, m/z 433 → m/z 300, m/z 433 → m/z 300 and m/z 579 → m/z 285 transitions, respectively. Linear concentration ranges of calibration curves were 4.0–800.0 ng/mL for hyperin and reynoutrin and 8.0–1600.0 ng/mL for guaijaverin when 100 μL of plasma was analyzed. We used this validated method to study the pharmacokinetics of hyperin, reynoutrin and guaijaverin in mice following oral and intravenous administration. All three quercetin‐3‐O‐glycosides showed poor oral absorption in mice, and the absolute bioavailability of hyperin after oral administration of 100 mg/kg was 1.2%. Pretreatment with verapamil increased the peak concentration and area under the concentration–time curve of hyperin, which were significantly higher than the control values. The half‐life of hyperin with verapamil was significantly prolonged compared with that of the control. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号