首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ab initio complete active-space self-consistent field (CASSCF) and second-order Multireference M?ller-Plesset perturbation (MRMP2) calculations were performed to examine the S1-S0 internal conversion of 6-cyanoazulene (6CNAZ). The azulene skeletons of 6CNAZ in S0 and S1 have features that resemble those of azulene. The stable geometry in S0 is characterized by (i) a C2v structure, (ii) an aromatic bond-equalized structure in which all the peripheral skeletal bond distances resemble an aromatic CC bond distance, and (iii) a single bond character of the transannular bond. The stable geometry in S1 is characterized by a nonaromatic C2v structure. Contrary to similarities of the stable geometries in S0 and S1 between 6CNAZ and azulene, the conical intersection (S1/S0-CIX) of 6CNAZ is different from that of azulene. The S1/S0-CIX of 6CNAZ takes a planar structure, whereas that of azulene takes a nonplanar structure in the seven-membered ring (Amatatsu, Y.; Komura, K. J. Chem. Phys. 2006, 125, 174311/1-8). On the basis of those computational findings, we predict the photochemical behavior of 6CNAZ in the S1-S0 internal conversion.  相似文献   

2.
Ab initio calculations have been performed to examine the photochemical behavior of 4-(dimethylamino)benzenzonitrile (DMABN). The conical intersection between S2 and S1 (S2/S1-CIX), where the internal conversion takes place after the main transition of S0-S2 at the equilibrium geometry in S0, is characterized by a dimethylamino-twisted quinoid structure where aromaticity of the benzene ring is lost. The optimized geometry of the charge transfer (CT) state in S1 has a feature similar to that of S2/S1-CIX but is not energetically stabilized so much. Consequently, electronically excited DMABN with CT character relaxes into the most stable locally excited (LE) state in S1 through a recrossing at S2/S1-CIX in gas phase or nonpolar solvent. In polar solvent, in contrast, the equilibration between LE and CT takes place in S1 so that the CT state is more stable because of electrostatic interaction. The excited states of DMABN derivatives have been also examined. On the basis of the present computational results, a new and simple guiding principle of the emission properties is proposed, where conventional twisted intramolecular CT (TICT) and planar intramolecular CT (PICT) models are properly incorporated.  相似文献   

3.
The reaction coordinate of the S(2)-S(1) internal conversion (IC) of phenylacetylene (PA) was analyzed using the ab initio complete active space self-consistent field (CASSCF) method. In the first process after electronic excitation into S(2), the aromatic benzene ring is transformed into a nonaromatic quinoid structure. The ethynyl part (-C[triple bond]CH) takes an incomplete allenoid structure in which the CC bond elongates to an intermediate value between typical C[triple bond]C triple and C=C double bonds, but the bend angle of -CCH is 180 degrees . In the second process, PA takes a complete allenoid structure with an out-of-plane location of the beta-H atom (i.e., the H atom of the ethynyl part) and a further elongation of the CC bond so that PA is most stable in S(2) (S(2)-bent). The conical intersection between S(2) and S(1) (S(2)/S(1)-CIX) is located near the S(2)-bent geometry and is slightly unstable energetically. After transition at S(2)/S(1)-CIX, PA quickly loses both quinoid and allenoid structures and recovers the aromaticity of the benzene ring in S(1). Analysis of the dipole moment along the reaction coordinate shows that the weak electron-withdrawing group of the ethynyl part in S(0) suddenly changes into an electron-donating group in S(2) after the main transition of S(0)-S(2). The photoinduced change of the dipole moment is a driving force to the formation of a quinoid structure in S(2). Regarding the benefit of the reaction coordinate analysis of the multidimensional potential energy surfaces of PA, the present picture of the IC process is much more elaborate than our previous representation (Amatatsu, Y.; Hasebe, Y. J. Phys. Chem. A 2003 107, 11169-11173). Vibrational analyses along the reaction coordinate were also performed to support a time-resolved spectroscopic experiment on the S(2)-S(1) IC process of PA.  相似文献   

4.
Ab initio complete active space self-consistent field (CASSCF) calculations combined with polarized continuum model (PCM) have been performed to examine the charge transfer (CT) state formation of trans-4-dimethylamino,4'-cyanostilbene (DCS) in a solvent. In a polar solvent, the globally stable geometry in S1 takes a twisted conformation where the electron-donating dimethylanilino group is highly twisted against the other part of the electron-withdrawing 4-cyanostyryl group. In addition, skeletal relaxation where the aromatic benzene rings turn to be a nonaromatic quinoid structure is essential to stabilize the CT state. In a nonpolar solvent, the stable geometry in S1 takes a nontwisted conformation, though the skeletal relaxation is also an essential factor. By means of the free energy decomposition analysis, it is found that the stable CT geometry which depends on solvent polarity mainly comes from two factors: the linkage bond between the dimethylanilino and the 4-cyanostyryl group and the electrostatic interaction. In a polar solvent, the linkage bond has a single bond character to slightly prevent the torsional motion. This twist geometrically assists the charge separation so as to reinforce the electrostatic interaction. In consequence, the twisted internal CT (TICT) conformation is stable. In a nonpolar solvent, on the other hand, a nontwisted CT state is stable because the linkage bonds greatly increase a double bond character so as to prevent the torsional motion, while the electrostatic interaction is not so enhanced even by the geometrical twist.  相似文献   

5.
A simple way of rationalizing the structures of cyclic, bicyclic, and tricyclic sulfur–nitrogen species and their congeners is presented. Starting from a planar tetrasulfur tetranitride with 12π electrons, we formally derived on paper a number of heterocyclic eight‐membered 10π electron species by reacting the 3p orbitals of two opposite sulfur centers with one radical each, or by replacing these centers by other atoms with five (P) or four (Si, C) valence electrons. This led to planar aromatic 10π electron systems, nonplanar bicyclic structures with a transannular S?S bond, and tricyclic structures by bridging the planar rings with an acceptor or donor unit. The final structures depend on the number of π electrons in the bridges. Intermediate biradicals are stabilized by Jahn–Teller distortion, giving transannular S?S bonds between the NSN units. This procedure may be summarized by two rules, which provide a rationale for the structures of a large number of sulfur–nitrogen‐based molecules. The long bonds between the NSN units show a p character of >95 %. The qualitative results have been compared with known molecular structures and the results of B3LYP/cc‐pVTZ calculations as well as CASSCF and CASVB calculations. B3LYP/cc‐pVTZ calculations have also provided the UV/Vis spectra and the NICS values of the planar 10π systems.  相似文献   

6.
The structure of N,N′,N′′‐tribenzylphosphorothioic triamide, C21H24N3PS, (I), and analysis of the bond‐angle sums at the N atoms for this compound, and for 74 structures with a P(S)[N]3 skeleton and the N atom in a three‐coordinate geometry found in the Cambridge Structural Database [CSD; Groom & Allen (2014). Angew. Chem. Int. Ed. 53 , 662–671], are reported. For (I), the bond‐angle sum at one of the N atoms [359 (1)°] shows a nearly planar configuration, while the other two show a nonplanar geometry with bond‐angle sums of 342 (1) and 347 (1)°. The location of the atoms attached to the nonplanar N atoms suggests an anti orientation of the corresponding lone electron pairs (LEPs) on these N atoms with respect to the P=S group. For 74 structures with a P(S)[N]3 skeleton and with the N atom in a three‐coordinate geometry, the bond‐angle sums at the N atoms were found to be in the range 293–360°. Among 307 such three‐coordinate N atoms, 39% (120 N atoms) have bond‐angle sums in the range 359–360°, in accordance with sp2 hybridization, and 45% (138 N atoms) have bond‐angle sums in the range 352–359°, with hybridization close to sp2. For the orientation of the LEP with respect to the P=S group, the anti orientation was found to be a general rule for N atoms, with the corresponding bond‐angle sums deviating by more than 8° from the planar value of 360°. In the title structure, the S atom takes part in intermolecular (N—H...)(N—H...)S hydrogen bonds, connecting the molecules into extended chains parallel to the b axis. The co‐operation of one N atom in an N—H...S hydrogen bond as an H‐atom donor, and in an N—H...N hydrogen bond as an acceptor, is a novel feature of the crystal structure.  相似文献   

7.
The attempt to prepare hitherto unknown homopolyatomic cations of sulfur by the reaction of elemental sulfur with blue S8(AsF6)2 in liquid SO2/SO2ClF, led to red (in transmitted light) crystals identified crystallographically as S8(AsF6)2. The X-ray structure of this salt was redetermined with improved resolution and corrected for librational motion: monoclinic, space group P2(1)/c (No. 14), Z = 8, a = 14.986(2) A, b = 13.396(2) A, c = 16.351(2) A, beta = 108.12(1) degrees. The gas phase structures of E8(2+) and neutral E8 (E = S, Se) were examined by ab initio methods (B3PW91, MPW1PW91) leading to delta fH theta[S8(2+), g] = 2151 kJ/mol and delta fH theta[Se8(2+), g] = 2071 kJ/mol. The observed solid state structures of S8(2+) and Se8(2+) with the unusually long transannular bonds of 2.8-2.9 A were reproduced computationally for the first time, and the E8(2+) dications were shown to be unstable toward all stoichiometrically possible dissociation products En+ and/or E4(2+) [n = 2-7, exothermic by 21-207 kJ/mol (E = S), 6-151 kJ/mol (E = Se)]. Lattice potential energies of the hexafluoroarsenate salts of the latter cations were estimated showing that S8(AsF6)2 [Se8(AsF6)2] is lattice stabilized in the solid state relative to the corresponding AsF6- salts of the stoichiometrically possible dissociation products by at least 116 [204] kJ/mol. The fluoride ion affinity of AsF5(g) was calculated to be 430.5 +/- 5.5 kJ/mol [average B3PW91 and MPW1PW91 with the 6-311 + G(3df) basis set]. The experimental and calculated FT-Raman spectra of E8(AsF6)2 are in good agreement and show the presence of a cross ring vibration with an experimental (calculated, scaled) stretching frequency of 282 (292) cm-1 for S8(2+) and 130 (133) cm-1 for Se8(2+). An atoms in molecules analysis (AIM) of E8(2+) (E = S, Se) gave eight bond critical points between ring atoms and a ninth transannular (E3-E7) bond critical point, as well as three ring and one cage critical points. The cage bonding was supported by a natural bond orbital (NBO) analysis which showed, in addition to the E8 sigma-bonded framework, weak pi bonding around the ring as well as numerous other weak interactions, the strongest of which is the weak transannular E3-E7 [2.86 A (S8(2+), 2.91 A (Se8(2+)] bond. The positive charge is delocalized over all atoms, decreasing the Coulombic repulsion between positively charged atoms relative to that in the less stable S8-like exo-exo E8(2+) isomer. The overall geometry was accounted for by the Wade-Mingos rules, further supporting the case for cage bonding. The bonding in Te8(2+) is similar, but with a stronger transannular E3-E7 (E = Te) bonding. The bonding in E8(2+) (E = S, Se, Te) can also be understood in terms of a sigma-bonded E8 framework with additional bonding and charge delocalization occurring by a combination of transannular n pi *-n pi * (n = 3, 4, 5), and np2-->n sigma * bonding. The classically bonded S8(2+) (Se8(2+) dication containing a short transannular S(+)-S+ (Se(+)-Se+) bond of 2.20 (2.57) A is 29 (6) kJ/mol higher in energy than the observed structure in which the positive charge is delocalized over all eight chalcogen atoms.  相似文献   

8.
The electronic structure of azulene molecule has been studied. We have obtained the optimized structures of ground and singlet excited states by using the complete active space self-consistent-field (CASSCF) method, and calculated vertical and 0-0 transition energies between the ground and excited states with second-order M?ller-Plesset perturbation theory (CASPT2). The CASPT2 calculations indicate that the bond-equalized C(2v) structure is more stable than the bond-alternating C(s) structure in the ground state. For a physical understanding of electronic structure change from C(2v) to C(s), we have performed the CASSCF calculations of Duschinsky matrix describing mixing of the b(2) vibrational mode between the ground (1A(1)) and the first excited (1B(2)) states based on the Kekule-crossing model. The CASPT2 0-0 transition energies are in fairly good agreement with experimental results within 0.1-0.3 eV. The CASSCF oscillator strengths between the ground and excited states are calculated and compared with experimental data. Furthermore, we have calculated the CASPT2 dipole moments of ground and excited states, which show good agreement with experimental values.  相似文献   

9.
The ground state (S(0)) and lowest-energy triplet state (T(1)) potential energy surfaces (PESs) concerning the thermal and photochemical rearrangement of bicyclo[3.1.0]hex-3-en-2-one (8) to the ketonic tautomer of phenol (11) have been extensively explored using ab initio CASSCF and CASPT2 calculations with several basis sets. State T(1) is predicted to be a triplet pipi lying 66.5 kcal/mol above the energy of the S(0) state. On the S(0) PES, the rearrangement of 8 to 11 is predicted to occur via a two-step mechanism where the internal cyclopropane C-C bond is broken first through a high energy transition structure (TS1-S(0)()), leading to a singlet intermediate (10-S(0)()) lying 25.0 kcal/mol above the ground state of 8. Subsequently, this intermediate undergoes a 1,2-hydrogen shift to yield 11 by surmounting an energy barrier of only 2.7 kcal/mol at 0 K. The rate-determining step of the global rearrangement is the opening of the three-membered ring in 8, which involves an energy barrier of 41.2 kcal/mol at 0 K. This high energy barrier is consistent with the fact that the thermal rearrangement of umbellulone to thymol is carried out by heating at 280 degrees C. Regarding the photochemical rearangement, our results suggest that the most efficient route from the T(1) state of 8 to ground state 11 is the essentially barrierless cleavage of the internal cyclopropane C-C bond followed by radiationless decay to the S(0) state PES via intersystem crossing (ISC) at a crossing point (S(0)()/T(1)()-1) located at almost the same geometry as TS1-S(0)(), leading to the formation of 10-S(0)() and the subsequent low-barrier 1,2-hydrogen shift. The computed small spin-orbit coupling between the T(1) and S(0) PESs at S(0)()/T(1)()-1 (1.2 cm(-)(1)) suggests that the ISC between these PESs is the rate-determining step of the photochemical rearrangement 8 --> 11. Finally, computational evidence indicates that singlet intermediate 10-S(0)() should not be drawn as a zwitterion, but rather as a diradical having a polarized C=O bond.  相似文献   

10.
Fe_3(CO)_(12)与5个2,4-二硫代乙内酰脲SCNHC(R_1)(R_2)C(S)NH反应制得通式为Fe_3(CO)_8(u3-S)_2(L)含卡宾配体的5个新铁羰基联合物(1~5),对其进行了元素分析、IR、~1HNMR和MS表征,并用X射线衍射法测定了簇合物3的晶体和分子结构,表明2,4-二硫代乙内酰脲分子片配位基:CNHC(CH_3)_2C(S)NH的卡宾碳具有sp~2成键特征,其C卡宾-Fe键长0.1898nm,3的分子几何构型维持母体物Fe_3(CO)_9(u_3-S)_2的形状,其中卡宾取代了四方锥分子骨架基底平面Fe(1)S(1)Fe(3)S(2)的Fe(1)原子上轴向位置的一个端羰CO。  相似文献   

11.
Excited state reaction paths and the corresponding energy profiles of salicylic acid have been determined with the CC2 method, which is a simplified version of singles-and-doubles coupled cluster theory. At crucial points of the potential energy hypersurfaces, single-point energy calculations have been performed with the CASPT2 method (second-order perturbation theory based on the complete active space self-consistent field reference). Hydrogen transfer along the intramolecular hydrogen bond as well as torsion and pyramidization of the carboxy group have been identified as the most relevant photochemical reaction coordinates. The keto-type planar S(1) state reached by barrierless intramolecular hydrogen transfer represents a local minimum of the S(1) energy surface, which is separated by a very low barrier from a reaction path leading to a low-lying S(1)-S(0) conical intersection via torsion and pyramidization of the carboxy group. The S(1)-S(0) conical intersection, which occurs for perpendicular geometry of the carboxy group, is a pure biradical. From the conical intersection, a barrierless reaction path steers the system back to the two known minima of the S(0) potential energy surface (rotamer I, rotamer II). A novel structure, 7-oxa-bicyclo[4.2.0]octa-1(6),2,4-triene-8,8-diol, has been identified as a possible transient intermediate in the photophysics of salicylic acid.  相似文献   

12.
The potential energy surfaces of isomerization, dissociation, and elimination reactions for CH3CH2COCl in the S0 and S1 states have been mapped with the different ab initio calculations. Mechanistic photodissociation of CH3CH2COCl at 266 nm has been characterized through the computed potential energy surfaces, the optimized surface crossing structure, intrinsic reaction coordinate, and ab initio molecular dynamics calculations. Photoexcitation at 266 nm leads to the CH3CH2COCl molecules in the S1 state. From this state, the C-Cl bond cleavage proceeds in a time scale of picosecond in the gas phase. The barrier to the C-Cl bond cleavage on the S1 surface is significantly increased by effects of the matrix and the internal conversion to the ground state prevails in the condensed phase. The HCl eliminations as a result of internal conversion to the ground state become the dominant channel upon photodissociation of CH3CH2COCl in the argon matrix at 10 K.  相似文献   

13.
General expressions for calculating the internal conversion decay rate constants between two adiabatic electronic states and between two diabatic electronic states are derived. The expressions include the displacements, distortions, and rotations of potential energy surfaces as well as the temperature. For illustration, internal conversion rate constants between various singlet electronic states of ethylene and between the first excited S1 and the ground S0 singlet electronic states of azulene are calculated.  相似文献   

14.
The molecular structure of (trifluoromethyl)sulfanyl sulfinylimine, CF3---S---N=S=O, was determined by gas electron diffraction (GED) and ab initio calculations (HF/3–21G*, HF/6–31+G* and MP2/6–31+G*). Experimental and theoretical methods result in a structure with planar C---S---N=S=O skeleton (Cs symmetry), anti orientation of the S---C bond relative to the N=S bond and syn orientation of the S---N bond relative to the S=O double bond (anti-syn structure). The following skeletal parameters (ra values with 3σ uncertainties) were derived in the GED analysis: S---C, 1.831(4) Å; S---N, 1.684(5) Å; N=S, 1.538(6) Å; S=O, 1.453(6) Å; C---S---N, 94.6(8)°; S---N=S, 120.6(6)°; N=S=O: 116.5(8)°. A normal coordinate analysis based on FTIR (gas), FTIR (matrix) and Raman (liquid) spectra was performed. The UV (gas) spectrum was recorded and interpretation of the resonance Raman effect leads to the conclusion that the molecular symmetry (Cs) is retained upon electronic excitation.  相似文献   

15.
Excited-state reaction paths and the corresponding energy profiles of 2-(2'-hydroxyphenyl)benzotriazole (TIN-H) have been determined with the CC2 (simplified singles-and-doubles coupled-cluster) ab initio method. Hydrogen transfer along the intramolecular hydrogen bond, torsion of the aromatic rings and pyramidization of the central nitrogen atom are identified as the most relevant photochemical reaction coordinates. The keto-type planar S(1) state reached by barrierless intramolecular hydrogen transfer is found to be unstable with respect to torsion. The latter mode, together with a moderate pyramidization of the central nitrogen atom, provides barrierless access to a S(1)-S(0) conical intersection. Only the pi-type orbitals of the aromatic rings are involved in the open-shell structures. The S(1)-S(0) conical intersection, which occurs for perpendicular geometry of the aromatic rings, is a pure biradical. From the conical intersection, a barrierless reaction path steers the system back to the enol-type minimum of the S(0) potential-energy surface, thus closing the photocycle. This photophysical pathway accounts for the remarkable photostability of the molecule.  相似文献   

16.
D(CH2CH2S)2MSNH(C6H4) (M = Ge, Sn; D = O, S) spirocycles were synthesized to analyze the influence of the decrease of the radius of the metal and the change of the hardness of donor atom on the strength of the transannular bond and the hypercoordination of group 14 elements. The compounds were characterized by IR, Raman and NMR (1H, 13C and 119Sn) spectroscopy, EI mass spectrometry and elemental analysis. Monocrystal X-ray diffraction analyses were made for the germanium compounds. The germaspirocycles were five-coordinated and had distorted trigonal bipyramid geometry. In contrast with most of the reported analogous germocanes, the transannular bond is stronger when the donor atom is oxygen, rather than sulfur. O(CH2CH2S)2GeSNH(C6H4) exhibits an intramolecular hydrogen bond formation between the amine group and the transannular oxygen. The presence of this hydrogen bond determines whether the sulfur (O?Ge–S) or the nitrogen (S?Ge–N) of the five-member ring is the axial atom. According to the 119Sn chemical shift, both stannospirocycles were five-coordinated and therefore the presence of the transannular interaction in solution could be suggested.  相似文献   

17.
作者曾系统研究[Ln(CCl_3COO)_3·dipy·H_2O]2配合物的合成和性质,并测定了[La(CCl_3COO)_3·dipy·H_2O]_2的晶体结构(待发表)。本文用量子化学INDO方法探讨镧配合物的电子结构和化学键。程序和参数见文献[1]。分子结构采用晶体结构数据。计算模型取配合物的一半,用HCOO~-代CCl_3COO~-,这样的近似对结果可能有影响,但在讨论羧基与La配位以及双聚机理时使图象更为简明清晰。分子骨架结构见图1,其中HCO_1O_5~-的一个氧  相似文献   

18.
应用密度泛函理论在B3LYP/6-31G(d)水平上对新型除草剂单嘧磺隆绕脲桥部分两个C—N键的内旋转势能面进行计算, 然后对势能面上的驻点进行构型优化和过渡态搜索, 得到单嘧磺隆4种稳定构象和构象转换过程所涉及的8个过渡态结构. 研究结果表明, 单嘧磺隆晶体构象-活性构象转换过程中涉及4种稳定构象和8条转换途径, 脲桥部分NH基团与嘧啶环上N原子所形成的分子内氢键对于构象的稳定性及转换过程起着十分重要的作用. 应用极化连续介质溶剂模型(PCM)在B3LYP/6-31++G(d, p)水平下进行溶剂化效应计算, 结果表明单嘧磺隆从晶体构象转换成活性构象主要是在水相中进行的.  相似文献   

19.
In 1-methyl-1,2-dinitroguanidine, the nitroguanyl group has planar geometry with an intramolecular hydrogen bond, although the conformation of the whole molecule is slightly nonplanar. Because of - electron density delocalization, the C-N, N-N, and N-O bond lengths are intermediate between the corresponding values for the single and double bonds. The distinction of the crystal structure is the absence of intermolecular hydrogen bonds.Original Russian Text Copyright © 2004 by A. D. Vasiliev, A. M. Astakhov, M. S. Molokeev, L. A. Kruglyakova, and R. S. StepanovTranslated from Zhurnal Strukturnoi Khimii, Vol. 45, No. 3, pp. 558–561, May–June 2004.  相似文献   

20.
The Raman spectrum (3500-100 cm-1) of 1,1,1-trifluoro-propane-2-thione (TFPT), CF3C(S)CH3 of the solid phase has been recorded. The internal rotation of CH3 and/or CF3 moieties around CC bonds in TFPT allow five hypothetical conformers (Cs and C1 point groups). Aided by quantum chemical (QC) calculations, the Cc conformer is the only stable form (CF3 and CH3 groups are eclipsing the CS bond) which contains a planar FCC(S)CH backbone and possess intramolecular hydrogen sulfur interactions. However, other conformations (with the orientation of sulfur atom being trans to either hydrogen or fluorine atom) are either transition states or not fully converged geometry with "gauche" orientation. Moreover, the calculation were carried out at the level of Becke three Lee-Yan-Parr (B3LYP) parameters up to 6-311++G(d,p) basis sets. The torsional barriers are adequately described by a three-fold potential, V3 which have been determined utilizing the optimized structural parameters from the B3LYP/6-31G(d) basis set along with potential surface scan. Barriers of 1.28 kcal/mol (448 cm-1) and 1.94 kcal/mol (678 cm-1) were calculated for CH3 and CF3 symmetric rotors, respectively. Complete vibrational assignments have been reported for the stable Cc isomer which is supported by normal coordinate analysis and potential energy distributions (PEDs) for all fundamentals. Moreover, equilibrium geometries, vibrational frequencies are compared to the corresponding experimental values of acetone, 1,1,1-trifluoroacetone (TFA), hexafluoroacetone (HFA) and other molecules having the CF3 moiety whenever appropriate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号