首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This article studies some geometrical aspects of the semidefinite linear complementarity problem (SDLCP), which can be viewed as a generalization of the well-known linear complementarity problem (LCP). SDLCP is a special case of a complementarity problem over a closed convex cone, where the cone considered is the closed convex cone of positive semidefinite matrices. It arises naturally in the unified formulation of a pair of primal-dual semidefinite programming problems. In this article, we introduce the notion of complementary cones in the semidefinite setting using the faces of the cone of positive semidefinite matrices and show that unlike complementary cones induced by an LCP, semidefinite complementary cones need not be closed. However, under R0-property of the linear transformation, closedness of all the semidefinite complementary cones induced by L is ensured. We also introduce the notion of a principal subtransformation with respect to a face of the cone of positive semidefinite matrices and show that for a self-adjoint linear transformation, strict copositivity is equivalent to strict semimonotonicity of each principal subtransformation. Besides the above, various other solution properties of SDLCP will be interpreted and studied geometrically.  相似文献   

2.
Central Swaths     
We develop a natural generalization to the notion of the central path, a concept that lies at the heart of interior-point methods for convex optimization. The generalization is accomplished via the “derivative cones” of a “hyperbolicity cone”, the derivatives being direct and mathematically appealing relaxations of the underlying (hyperbolic) conic constraint, be it the non-negative orthant, the cone of positive semidefinite matrices, or other. We prove that a dynamics inherent to the derivative cones generates paths always leading to optimality, the central path arising from a special case in which the derivative cones are quadratic. Derivative cones of higher degree better fit the underlying conic constraint, raising the prospect that the paths they generate lead to optimality quicker than the central path.  相似文献   

3.
This article studies some geometrical aspects of the semidefinite linear complementarity problem (SDLCP), which can be viewed as a generalization of the well-known linear complementarity problem (LCP). SDLCP is a special case of a complementarity problem over a closed convex cone, where the cone considered is the closed convex cone of positive semidefinite matrices. It arises naturally in the unified formulation of a pair of primal-dual semidefinite programming problems. In this article, we introduce the notion of complementary cones in the semidefinite setting using the faces of the cone of positive semidefinite matrices and show that unlike complementary cones induced by an LCP, semidefinite complementary cones need not be closed. However, under R 0-property of the linear transformation, closedness of all the semidefinite complementary cones induced by L is ensured. We also introduce the notion of a principal subtransformation with respect to a face of the cone of positive semidefinite matrices and show that for a self-adjoint linear transformation, strict copositivity is equivalent to strict semimonotonicity of each principal subtransformation. Besides the above, various other solution properties of SDLCP will be interpreted and studied geometrically.  相似文献   

4.
We present a decomposition-approximation method for generating convex relaxations for nonconvex quadratically constrained quadratic programming (QCQP). We first develop a general conic program relaxation for QCQP based on a matrix decomposition scheme and polyhedral (piecewise linear) underestimation. By employing suitable matrix cones, we then show that the convex conic relaxation can be reduced to a semidefinite programming (SDP) problem. In particular, we investigate polyhedral underestimations for several classes of matrix cones, including the cones of rank-1 and rank-2 matrices, the cone generated by the coefficient matrices, the cone of positive semidefinite matrices and the cones induced by rank-2 semidefinite inequalities. We demonstrate that in general the new SDP relaxations can generate lower bounds at least as tight as the best known SDP relaxations for QCQP. Moreover, we give examples for which tighter lower bounds can be generated by the new SDP relaxations. We also report comparison results of different convex relaxation schemes for nonconvex QCQP with convex quadratic/linear constraints, nonconvex quadratic constraints and 0–1 constraints.  相似文献   

5.
Given any open convex cone K, a logarithmically homogeneous, self-concordant barrier for K, and any positive real number r < 1, we associate, with each direction , a second-order cone containing K. We show that K is the interior of the intersection of the second-order cones , as x ranges over all directions in K. Using these second-order cones as approximations to cones of symmetric, positive definite matrices, we develop a new polynomial-time primal-dual interior-point algorithm for semidefinite programming. The algorithm is extended to symmetric cone programming via the relation between symmetric cones and Euclidean Jordan algebras.  相似文献   

6.
We prove that the hyperbolicity cones of elementary symmetric polynomials are spectrahedral, i.e., they are slices of the cone of positive semidefinite matrices. The proof uses the matrix-tree theorem, an idea already present in Choe et al.  相似文献   

7.
The copositive cone, and its dual the completely positive cone, have useful applications in optimisation, however telling if a general matrix is in the copositive cone is a co-NP-complete problem. In this paper we analyse some of the geometry of these cones. We discuss a way of representing all the maximal faces of the copositive cone along with a simple equation for the dimension of each one. In doing this we show that the copositive cone has faces which are isomorphic to positive semidefinite cones. We also look at some maximal faces of the completely positive cone and find their dimensions. Additionally we consider extreme rays of the copositive and completely positive cones and show that every extreme ray of the completely positive cone is also an exposed ray, but the copositive cone has extreme rays which are not exposed rays.  相似文献   

8.
We show that SDP (semidefinite programming) and SOCP (second order cone programming) relaxations provide exact optimal solutions for a class of nonconvex quadratic optimization problems. It is a generalization of the results by S. Zhang for a subclass of quadratic maximization problems that have nonnegative off-diagonal coefficient matrices of quadratic objective functions and diagonal coefficient matrices of quadratic constraint functions. A new SOCP relaxation is proposed for the class of nonconvex quadratic optimization problems by extracting valid quadratic inequalities for positive semidefinite cones. Its effectiveness to obtain optimal values is shown to be the same as the SDP relaxation theoretically. Numerical results are presented to demonstrate that the SOCP relaxation is much more efficient than the SDP relaxation.  相似文献   

9.
 In Part I of this series of articles, we introduced a general framework of exploiting the aggregate sparsity pattern over all data matrices of large scale and sparse semidefinite programs (SDPs) when solving them by primal-dual interior-point methods. This framework is based on some results about positive semidefinite matrix completion, and it can be embodied in two different ways. One is by a conversion of a given sparse SDP having a large scale positive semidefinite matrix variable into an SDP having multiple but smaller positive semidefinite matrix variables. The other is by incorporating a positive definite matrix completion itself in a primal-dual interior-point method. The current article presents the details of their implementations. We introduce new techniques to deal with the sparsity through a clique tree in the former method and through new computational formulae in the latter one. Numerical results over different classes of SDPs show that these methods can be very efficient for some problems. Received: March 18, 2001 / Accepted: May 31, 2001 Published online: October 9, 2002 RID="⋆" ID="⋆"The author was supported by The Ministry of Education, Culture, Sports, Science and Technology of Japan. Key Words. semidefinite programming – primal-dual interior-point method – matrix completion problem – clique tree – numerical results Mathematics Subject Classification (2000): 90C22, 90C51, 05C50, 05C05  相似文献   

10.
A standard quadratic problem consists of finding global maximizers of a quadratic form over the standard simplex. In this paper, the usual semidefinite programming relaxation is strengthened by replacing the cone of positive semidefinite matrices by the cone of completely positive matrices (the positive semidefinite matrices which allow a factorization FF T where F is some non-negative matrix). The dual of this cone is the cone of copositive matrices (i.e., those matrices which yield a non-negative quadratic form on the positive orthant). This conic formulation allows us to employ primal-dual affine-scaling directions. Furthermore, these approaches are combined with an evolutionary dynamics algorithm which generates primal-feasible paths along which the objective is monotonically improved until a local solution is reached. In particular, the primal-dual affine scaling directions are used to escape from local maxima encountered during the evolutionary dynamics phase.  相似文献   

11.
We study symmetric tensor spaces and cones arising from polynomial optimization and physical sciences.We prove a decomposition invariance theorem for linear operators over the symmetric tensor space,which leads to several other interesting properties in symmetric tensor spaces.We then consider the positive semidefiniteness of linear operators which deduces the convexity of the Frobenius norm function of a symmetric tensor.Furthermore,we characterize the symmetric positive semidefinite tensor(SDT)cone by employing the properties of linear operators,design some face structures of its dual cone,and analyze its relationship to many other tensor cones.In particular,we show that the cone is self-dual if and only if the polynomial is quadratic,give specific characterizations of tensors that are in the primal cone but not in the dual for higher order cases,and develop a complete relationship map among the tensor cones appeared in the literature.  相似文献   

12.
We prove a conjecture of Helton, Pierce and Rodman about the connection between the ranks of matrices generating extreme rays in the cone of positive semidefinite matrices with a given sparsity pattern and the amount of fill-in for the specific sparsity pattern. We also present a necessary condition on the given sparsity pattern for the existence of a rank k extermal in the cone.  相似文献   

13.
The cone of Completely Positive (CP) matrices can be used to exactly formulate a variety of NP-Hard optimization problems. A tractable relaxation for CP matrices is provided by the cone of Doubly Nonnegative (DNN) matrices; that is, matrices that are both positive semidefinite and componentwise nonnegative. A natural problem in the optimization setting is then to separate a given DNN but non-CP matrix from the cone of CP matrices. We describe two different constructions for such a separation that apply to 5 × 5 matrices that are DNN but non-CP. We also describe a generalization that applies to larger DNN but non-CP matrices having block structure. Computational results illustrate the applicability of these separation procedures to generate improved bounds on difficult problems.  相似文献   

14.
Given a graph G on n nodes, let denote the cone consisting of the positive semidefinite matrices (with real or complex entries) having a zero entry at every off-diagonal position corresponding to a non edge of G. Then, the sparsity order of G is defined as the maximum rank of a matrix lying on an extreme ray of the cone . It is known that the graphs with sparsity order 1 are the chordal graphs and a characterization of the graphs with sparsity order 2 is conjectured in [1] in the real case. We show in this paper the validity of this conjecture. Moreover, we characterize the graphs with sparsity order 2 in the complex case and we give a decomposition result for the graphs with sparsity order in both real and complex cases. As an application, these graphs can be recognized in polynomial time. We also indicate how an inequality from [17] relating the sparsity order of a graph and its minimum fill-in can be derived from a result concerning the dimension of the faces of the cone . Received August 31, 1998/Revised April 26, 2000  相似文献   

15.
We develop algorithms to construct inner approximations of the cone of positive semidefinite matrices via linear programming and second order cone programming. Starting with an initial linear algebraic approximation suggested recently by Ahmadi and Majumdar, we describe an iterative process through which our approximation is improved at every step. This is done using ideas from column generation in large-scale linear programming. We then apply these techniques to approximate the sum of squares cone in a nonconvex polynomial optimization setting, and the copositive cone for a discrete optimization problem.  相似文献   

16.
The commutative class of search directions for semidefinite programming was first proposed by Monteiro and Zhang (Ref. 1). In this paper, we investigate the corresponding class of search directions for linear programming over symmetric cones, which is a class of convex optimization problems including linear programming, second-order cone programming, and semidefinite programming as special cases. Complexity results are established for short-step, semilong-step, and long-step algorithms. Then, we propose a subclass of the commutative class for which we can prove polynomial complexities of the interior-point method using semilong steps and long steps. This subclass still contains the Nesterov–Todd direction and the Helmberg–Rendl–Vanderbei–Wolkowicz/Kojima–Shindoh–Hara/Monteiro direction. An explicit formula to calculate any member of the class is also given.  相似文献   

17.
It is well known that second-order cone (SOC) programming can be regarded as a special case of positive semidefinite programming using the arrow matrix. This paper further studies the relationship between SOCs and positive semidefinite matrix cones. In particular, we explore the relationship to expressions regarding distance, projection, tangent cone, normal cone and the KKT system. Understanding these relationships will help us see the connection and difference between the SOC and its PSD reformulation more clearly.  相似文献   

18.
Using elementary duality properties of positive semidefinite moment matrices and polynomial sum-of-squares decompositions, we prove that the convex hull of rationally parameterized algebraic varieties is semidefinite representable (that is, it can be represented as a projection of an affine section of the cone of positive semidefinite matrices) in the case of (a) curves; (b) hypersurfaces parameterized by quadratics; and (c) hypersurfaces parameterized by bivariate quartics; all in an ambient space of arbitrary dimension.  相似文献   

19.
It has recently been shown (Burer, Math Program 120:479–495, 2009) that a large class of NP-hard nonconvex quadratic programs (NQPs) can be modeled as so-called completely positive programs, i.e., the minimization of a linear function over the convex cone of completely positive matrices subject to linear constraints. Such convex programs are NP-hard in general. A basic tractable relaxation is gotten by approximating the completely positive matrices with doubly nonnegative matrices, i.e., matrices which are both nonnegative and positive semidefinite, resulting in a doubly nonnegative program (DNP). Optimizing a DNP, while polynomial, is expensive in practice for interior-point methods. In this paper, we propose a practically efficient decomposition technique, which approximately solves the DNPs while simultaneously producing lower bounds on the original NQP. We illustrate the effectiveness of our approach for solving the basic relaxation of box-constrained NQPs (BoxQPs) and the quadratic assignment problem. For one quadratic assignment instance, a best-known lower bound is obtained. We also incorporate the lower bounds within a branch-and-bound scheme for solving BoxQPs and the quadratic multiple knapsack problem. In particular, to the best of our knowledge, the resulting algorithm for globally solving BoxQPs is the most efficient to date.  相似文献   

20.
We consider the problem of projecting a matrix onto the cones of copositive and completely positive matrices. As this can not be done directly, we use polyhedral approximations of the cones. With the help of these projections we obtain a technique to compute factorizations of completely positive matrices. We also describe a method to determine a cutting plane which cuts off an arbitrary matrix from the completely positive (or copositive) cone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号