首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
《Molecular physics》2013,111(19-20):1989-1995
  相似文献   

9.
10.
11.
12.
13.
14.
15.
16.
Sharp, Teichroeb and Forrest [J.S. Sharp, J.H. Teichroeb, J.A. Forrest, Eur. Phys. J. E 15, 473 (2004)] recently published a viscoelastic contact mechanics analysis of the embedment of gold nanospheres into a polystyrene (PS) surface. In the present comment, we investigate the viscoelastic response of the surface and conclude that the embedment experiments do not support the hypothesis of a liquid surface layer of sufficiently reduced "rheological temperature" to explain reports of very large reductions in the glass temperature of freely standing ultrathin polystyrene films. We also report some errors and discrepancies in the paper under comment that resulted in an inability to reproduce the reported calculations. We present our findings of error in a spirit of clarifying the problem of embedment of spheres into surfaces and in order that others can understand why they may not reproduce the results reported by Sharp, Teichroeb and Forrest. In the comment, we also examine the effects of the magnitude of the forces that result from the polymer surface-nanosphere particle interactions on the viscoelastic properties deduced from the embedment data and we provide a comparison of apparent surface or "rheological" temperature vs. experimental temperature that indicates further work needs to be performed to fully understand the surface embedment experiments. Finally, we comment that the nanosphere embedment measurements have potential as a powerful tool to determine surface viscoelastic properties.  相似文献   

17.
18.
19.
Sharp, Teichroeb and Forrest [J.S. Sharp, J.H. Teichroeb, J.A. Forrest, Eur. Phys. J. E 15, 473 (2004)] recently published a viscoelastic contact mechanics analysis of the embedment of gold nanospheres into a polystyrene (PS) surface. In the present comment, we investigate the viscoelastic response of the surface and conclude that the embedment experiments do not support the hypothesis of a liquid surface layer of sufficiently reduced “rheological temperature” to explain reports of very large reductions in the glass temperature of freely standing ultrathin polystyrene films. We also report some errors and discrepancies in the paper under comment that resulted in an inability to reproduce the reported calculations. We present our findings of error in a spirit of clarifying the problem of embedment of spheres into surfaces and in order that others can understand why they may not reproduce the results reported by Sharp, Teichroeb and Forrest. In the comment, we also examine the effects of the magnitude of the forces that result from the polymer surface-nanosphere particle interactions on the viscoelastic properties deduced from the embedment data and we provide a comparison of apparent surface or “rheological” temperature vs. experimental temperature that indicates further work needs to be performed to fully understand the surface embedment experiments. Finally, we comment that the nanosphere embedment measurements have potential as a powerful tool to determine surface viscoelastic properties.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号