首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hybrid modified microcrystalline cellulose (HMCC), with SiO2 nanoparticles being in-situ loaded on the surface of microcrystalline cellulose (MCC), was obtained through a sol-gel process of tetraethoxysilane (TEOS) by using ammonia as catalyst. HMCC was characterized by thermogravimetric analysis and scanning electron microscopy. The results showed that the spherical nano-SiO2 particles had been loaded successfully on the surface of the MCC with a loading ratio of approximately 10%. Then the HMCC was used in high vinyl solution-polymerized styrene butadiene rubber (SSBR)/silica compounds to replace part of the silica, and its effects on the physio-mechanical and dynamic mechanical properties of the vulcanizates were investigated. The results showed that the HMCC samples had improved physio-mechanical properties and lower heat build-up than that of MCC ones. Dynamic mechanical analysis (DMA) showed that the tanδ value of the compounds decreased at 60°C while increased obviously at 0°C, which meant that the tires would have improved wet-skid resistance while maintaining low rolling resistance when HMCC was used in tire tread compounds. As observed from scanning electron microscopy (SEM) photos, the sizes of the HMCC were in-situ decreased from 20–90 µm to 0.5–10 µm during the processing of the rubber compounds. Compared with MCC, the interfacial adhesion between HMCC and rubber was also improved greatly.  相似文献   

2.
Nylon 6 (PA 6)/ethylene bis-stearamide (EBS)/SiO2- carboxylic acid-functionalized silica nanoparticles (COOH) composites were prepared by in-situ polymerization of caprolactam. SiO2-COOH was used to enhance the compatibility between SiO2 and PA 6 matrix. For comparison, pure PA 6 and PA 6/EBS composites were also prepared via the same method. The PA 6/EBS/SiO2-COOH composites with low content of EBS and SiO2-COOH had greater melt-flow index (MFI) (the value of MFI increased by 50%–80%) than the pure PA 6. The results of mechanical properties showed almost no decrease in the tensile strength of PA 6/EBS/SiO2-COOH composites, with the bending strength decreasing by 17%–21%. However, the Izod impact strength of the PA 6/EBS/SiO2-COOH composites was greatly improved compared with pure PA 6, which indicated that the toughness of PA 6/EBS/SiO2-COOH had been greatly improved. The morphology of Izod impacted fractured surfaces of PA 6/EBS/SiO2-COOH was observed by scanning electron microscopy. The results revealed that the PA 6/EBS/SiO2-COOH composites presented a typical ductile fracture behavior with large amounts of long and large strip-like cracks. When the content of SiO2-COOH was 0.2 wt%, the SiO2-COOH particles were uniformly dispersed over the entire body of the PA 6 matrix. The results from differential scanning calorimetry indicated that the melting point (Tm), degree of crystallinity (Xc), and crystallization temperatures (Tc) of PA 6/EBS/SiO2-COOH composites were lower than the pure PA 6.  相似文献   

3.
This article investigated the elastic response of natural rubber (NR) compounds filled with silica from fly ash particles (FASi) and commercial precipitated silica (PSi), through a dynamic rebound test. The effects of silica content and initial drop‐height on the height and number of rebounds, dynamic stiffness, and the energy loss were of interest. The results suggested that the unfilled NR vulcanizates exhibited a greater elastic response than the FASi and PSi‐filled vulcanized composites. For given silica contents, the NR compounds with FASi had better elastic response than those with PSi, where the elastic response decreased with an increase in silica content. The greater the silica contents, the higher the dynamic stiffness of the composites. The initial drop‐height had no effects on the elastic response change for the unfilled NR compound, but resulted in an increase in the energy loss for the silica‐filled NR composites. The differences in the elastic responses for the NR compounds filled with silica from FASi and PSi were associated with the differences in crosslink density and the filler–filler interaction influenced by content of bis(3‐triethoxysilylpropyl) tetrasulfane (designated as Si69) used.  相似文献   

4.
An in situ solid state grafting reaction between epoxidized natural rubber (ENR) and silica was performed in a Haake internal mixer. Resulting ENR‐grafted silica was characterized by Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA) measurements. Based on these results, it was concluded the silanol groups (Si‐OH) of silica caused the ring opening of ENR oxirane rings so that ENR was grafted onto the silica surface. Transmission electron microscopy (TEM) photographs showed ENR‐grafted silica had better dispersibility and smaller aggregates compared with the original silica. Dynamical mechanical analysis (DMA) of vulcanized rubber compounds contained ENR‐grafted silica showed the glass transition temperature (T g) of grafted ENR molecules shifted to higher temperature, from ?3°C to 20°C, indicating the mobility of ENR was greatly restricted. As a result, the compounds containing ENR‐grafted silica have higher hysteresis, and can be applied in a much wider field, such as damping materials, tires of racing cars, and so on.  相似文献   

5.
The effect of organically modified montmorillonite (OMMT) and silane coupling agent on the abrasion resistance of SiO2-filled butadiene rubber (BR) vulcanizates has been investigated. Various amounts of OMMT are added into SiO2-filled BR vulcanizates. A silane coupling agent, bis-(3-triethoxysilyl propyl) tetrasulfide (Si69), is used to modify OMMT during the masterbatch preparation for evaluating the influence of surface treatment on the abrasion resistance. Incorporation of OMMT into BR results in deterioration of the abrasion resistance as compared to unfilled BR vulcanizate due to poor dispersion of OMMT and insufficient interfacial adhesion between OMMT and BR matrix. The use of Si69 improves dispersion of OMMT particles and rubber/OMMT adhesion, resulting in abrasion resistance enhancement of BR/OMMT vulcanizates. By using similar compounding conditions as those for BR/OMMT vulcanizate, nanodispersion of OMMT in BR/SiO2/OMMT vulcanizate has been achieved as judged by the high viscosity of the SiO2-filled BR compound. This improved dispersion leads to better abrasion resistance of the BR/SiO2/OMMT than that of the BR/SiO2 composite. Utilization of Si69 slightly affects the DIN volume loss of BR/SiO2/OMMT vulcanizates and the abrasion pattern.  相似文献   

6.
Carbon black (N234) and silica (Vulksail N) with a silane coupling agent Si-69 were chosen as reinforcing fillers in butyl rubber (IIR). The rheological behavior of the IIR compounds and the dynamic mechanical properties of IIR vulcanizates were investigated with a rubber processing analyzer and dynamic mechanical analysis (DMA) to examine the filler dispersion in the rubber matrix and the interaction between filler and matrix. The data indicated that the N234 filled IIR compounds had more filler networks than those filled with silica. Filler networks first appeared at 30 phr N234 and 45 phr silica with silane coupling agent Si-69. The interaction between N234 and IIR was far stronger than that between silica and IIR. However, the silica Vulksail N filled IIR had better wet-grip and lower rolling resistance compared to the carbon black-filled IIR should IIR be chosen as a substitute of styrene-butadiene rubber (SBR) in tire tread. The reinforcing factor, R, R (related to the difference in tan d peak height at Tg for the filled and nonfilled rubbers), also demonstrated that the N234-IIR interaction was stronger than for the silica. IIR with 30 phr N234 exhibited the largest tensile strength, 20.1 MPa, for those vulcanizates examined. The tensile and tear strengths of N234 filled IIR were higher than those of IIR with similar amounts of silica. Thus, it was concluded that N234 is a more active reinforcing filler in IIR than silica (Vulksail N) even with a silane coupling agent (Si-69).  相似文献   

7.
《Composite Interfaces》2013,20(4-6):391-401
Isora fibre-reinforced natural rubber (NR) composites were cured at 80, 100, 120 and 150°C using a low temperature curing accelerator system. Composites were also prepared using a conventional accelerator system and cured at 150°C. The swelling behavior of these composites at varying fibre loadings was studied in toluene and hexane. Results show that the uptake of solvent and volume fraction of rubber due to swelling was lower for the low temperature cured vulcanizates which is an indication of the better fibre/rubber adhesion. The uptake of aromatic solvent was higher than that of aliphatic solvent, for all the composites. As the fibre content increased, the solvent uptake decreased, due to the superior solvent resistance of the fibre and good fibre–rubber interactions. The bonding agent improved the swelling resistance of the composites due to the strong interfacial adhesion. Due to the improved adhesion between the fibre and rubber, the ratio of the change in volume fraction of rubber due to swelling to the volume fraction of rubber in the dry sample (Vτ ) was found to decrease in the presence of bonding agent. At a fixed fibre loading, the alkali treated fibre composite showed a lower percentage swelling than untreated one for both systems showing superior rubber–fibre interactions.  相似文献   

8.
Abstract

New organic–inorganic nanocomposites based on PVA, SiO2 and SSA were prepared in a single step using a solution casting method, with the aim to improve the thermomechanical properties and ionic conductivity of PVA membranes. The structure, morphology, and properties of these membranes were characterized by Raman spectroscopy, small- and wide-angle X-ray scattering (SAXS/WAXS), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), water uptake (Wu) measurements and ionic conductivity measurements. The SAXS/WAXS analysis showed that the silica deposited in the form of small nanoparticles (~ 10?nm) in the PVA composites and it also revealed an appreciable crystallinity of pristine PVA membrane and PVA/SiO2 membranes (decreasing with increasing silica loading), and an amorphous structure of PVA/SSA and PVA/SSA/SiO2 membranes with high SSA loadings. The thermal and mechanical stability of the nanocomposite membranes increased with the increasing silica loading, and silica also decreased the water uptake of membranes. As expected, the ionic conductivity increased with increasing content of the SSA crosslinker, which is a donor of the hydrophilic sulfonic groups. Some of the PVA/SSA/SiO2 membranes had a good balance between stability in aqueous environment (water uptake), thermomechanical stability and ionic conductivity and could be potential candidates for proton exchange membranes (PEM) in fuel cells.  相似文献   

9.
An investigation of the effect of an ionic liquid, 1-butyl-3-methylimidazolium tetrafluoroborate (BMI), on the properties of silica reinforced styrene-butadiene rubber (SBR), aimed to correlate the interactions between the ionic liquid and silica, silica and silica, and silica and rubber with the macro-properties and microstructure of SBR and SBR/silica vulcanizates is described. The interaction between the ionic liquid and silica was characterized by differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FTIR), the interaction between silica and silica was characterized by a rubber processing analyzer (RPA), and the interaction between rubber and silica was characterized by the bound rubber content. The FTIR analysis revealed that BMI can react with the hydroxyl groups on the surface of silica, improving the compatibility between the rubber and silica. The RPA and bound rubber testing indicated that the interactions between silica and silica particles were weakened and the interaction between silica and rubber increased with the incorporation of BMI into the SBR rubber. The bound rubber content showed a maximum with a BMI content of 3 phr. At the same time, the dispersion of silica in SBR was improved with the incorporation of BMI. With the increase of BMI content, the curing rate was greatly improved and the crosslink density increased. BMI also increased the tensile strength and abrasion resistance of the SBR vulcanizates. Most important, the BMI significantly improved the dynamic properties of the rubber composites, especially the wet-skid resistance and rolling resistance. However, excessive BMI (beyond 3 phr) acted as a plasticizer and was detrimental to the mechanical properties, resulting in a decrease of tensile strength and abrasion resistance.  相似文献   

10.
In this paper, fluorescent carbon dots (CDs) loaded on silica (SiO2) spheres are synthesized by the one‐pot hydrothermal route, and then folic acids (FA) are covalently conjugated on the surface of SiO2 spheres. The formed SiO2@CDs‐FA composites can target specific tissues, e.g., cancer. The key of this method is the employment of (3‐aminopropyl)trimethoxysilane as bridge joint, which not only serves as surface passivation agents allowing the large scale synthesis of CDs with high quantum yield, but also enables SiO2@CDs composites further covalent conjugation of FA. The resultant SiO2@CDs composites have many advantages such as easy separation and purification, highly stable, well water‐soluble, and biocompatible. Moreover, the SiO2@CDs‐FA could be used as fluorescent probes for biological imaging in vitro. The uptake of the SiO2@CDs‐FA into HeLa cells is receptor‐mediated endocytosis, which is confirmed by a comparative study using FR‐negative 293T cells. Findings from this study suggest that the SiO2@CDs‐FA composites could be used as a platform for cancer diagnosis studies in various biological systems.  相似文献   

11.
A high-performance silicone rubber (SR) composite (denoted as SCT) filled with 5 phr functionalized carbon nanotubes (CNTs) and 40 phr fumed silica (SiO2) was prepared by mechanical blending. The CNTs were functionalized by tetrakis (phenylmethyl)-thioperoxydi (carbothioamide) (TBzTD); it contains four benzene rings that can interact with the CNTs via π–π interactions. Raman spectroscopy and X-ray photoelectron spectroscopy analysis demonstrated the existence of the π-π interactions between the CNTs and the TBzTD. Transmission electron microscopy and scanning electron microscopy confirmed the uniform dispersion of the CNTs in SR matrix and strong interfacial interactions between the SR and the CNTs. The effects of these non-covalently functionalized CNTs on the mechanical properties of the silica filled SR composites were fully investigated. The results showed that the tear strength of the SCT composite with TBzTD functionalized CNTs was significantly improved, by 249%, compared with that of the composite containing only SiO2. An obvious crack deflection occurred in the SCT during the tearing process, resulting in the enhanced tear strength.  相似文献   

12.
《Composite Interfaces》2013,20(7):433-439
Radiopaque polymers can be used in medicine. Conventional protective shields against radiation X contain harmful lead compounds that are heavy and fragile. The aim of this work was to study the check the properties of selected fillers as X-radiation absorbing substance and them use in natural rubber (NR) composites. Fillers and simultaneously active substances were bismuth (III) oxide (Bi2O3), gadolinium (III) oxide (Gd2O3), tungsten (III) oxide (WO3) and antimony (III) oxide (Sb2O3). The polymeric matrix consisted of NR and sulfuric cross-linking system was applied. The properties of the fillers were determined from zeta potential and particle size measurements. X-ray absorption measurements were carried out using isotopic source 57Co (122?keV). The mechanical properties of the thin 1?mm composite plates were examined.  相似文献   

13.
《Composite Interfaces》2013,20(5-7):603-614
In this study composites of high density polyethylene (HDPE) with various SiO2 content were prepared by melt compounding using maleic anhydride grafted polyethylene (PE-g-MAH) as a compatibilizer. The composites containing 2, 4 and 6% by weight of SiO2 particles were melt-blended in a co-rotating twin screw extruder. In all composites, polyethylene-graft-maleic anhydride copolymer (PE-g-MAH, with 0.85% maleic anhydride content) was added as a compatibilizer in the amount of 2% by weight. Morphology of inorganic silica filler precipitated from emulsion media was investigated. Mechanical properties and composite microstructure were determined by tensile tests and scanning electron microscopy technique (SEM). Tensile strength, yield stress, Young's modulus and elongation at break of PE/SiO2 composites were mainly discussed against the properties of PE/PE-g-MAH/SiO2 composites. The most pronounced increase in mechanical parameters was observed in Young's modulus for composites with polyethylene grafted with maleic anhydride. The increase in the E-modulus of PE/PE-g-MAH/SiO2composites was associated with the compatibility and improvement of interfacial adhesion between the polyethylene matrix and the nanoparticles, leading to an increased degree of particle dispersion. This finding was verified on the basis of SEM micrographs for composites of PE/PE-g-MAH/4% by weight of SiO2. The micrographs clearly documented that addition of only 2 wt% of the compatibilizer changed the composite morphology by reducing filler aggregates size as well as their number. Increased adhesion between the PE matrix and SiO2 particles was interpreted to be a result of interactions taking place between the polar groups of maleic anhydride and silanol groups on the silica surface. These interactions are responsible for reduction of the size of silica aggregates, leading to improved mechanical properties.  相似文献   

14.
Two flame spray methods, emulsion combustion method (ECM) and flame spray pyrolysis (FSP), were compared for synthesis of pure and mixed SiO2 and ZnO nanoparticles. The effect of silicon precursor was investigated using liquid hexamethyldisiloxane (HMDSO) or SiO2 sol, while for ZnO zinc acetate (ZA) was used. Gas phase reaction took place when using HMDSO as Si precursor, forming nanoparticles, whereas the SiO2 sol used as Si source was not evaporated in the flame, creating large aggregates of the sol particles (e.g. 1 m). The FSP of ZA produced ZnO homogeneous nanoparticles. Lower flame temperatures in ECM than in FSP resulted in mixed gas and liquid phase reaction, forming ZnO particles with inhomogeneous sizes. The FSP of HMDSO and ZA led to intimate gas-phase mixing of Zn and Si, suppressing each other's particle growth, forming nanoparticles of 19 nm in BET-equivalent average primary particle diameter. Nucleation of ZnO and SiO2 occurred independently by ECM of HMDSO and ZA as well as by FSP of the SiO2 sol and ZA, creating a ZnO and SiO2 mixture. The reaction of ZnO with SiO2 was likely to be enhanced by ECM of the SiO2 sol and ZA where both Zn and Si species were not evaporated completely, resulting in ZnO, -willemite and Zn1.7SiO4 mixed phase.  相似文献   

15.
Crosslink density is an important structural parameter for cured rubber. Natural rubber (NR) vulcanizates with different crosslink densities were obtained through using different sulfur and accelerator amounts and different accelerator types. The crosslink density was characterized by an 1 H-NMR technique and its influence on mechanical properties, such as Shore A hardness, 300% modulus, tensile strength, and elongation at break, of NR vulcanizates was investigated. The results showed that both the sulfur amount and the accelerator type and amount had an influence on the crosslink density of the NR networks. The relationship between total crosslink density and mechanical properties was also studied. The results, by changing either the sulfur or the accelerator amount, showed that tensile strength of NR vulcanizates reached maximum value when the total crosslink density was around 13.5 × 10?5 mol/cm3, equivalently the average molecular weight of the intercrosslink chains (Mc) was around 7000 g/mol. The maximum value of tensile strength came from the balance between contributions of crosslink joints and stretch-induced orientation and/or crystallization of intercrosslink chains. The study on influence of total crosslink density on Shore A hardness and 300% modulus of NR vulcanizates showed that they both increased linearly with the crosslink density, the slopes were 2.7 ~ 3.0 cm3/10?5 mol and 0.27 ~ 0.31 MPa cm3/10?5 mol for Shore A hardness and 300% modulus, respectively, whether the crosslink density was varied by sulfur or accelerator.  相似文献   

16.
《Composite Interfaces》2013,20(5-7):615-624
In the present work the sol–gel process is used to obtain mullite (3Al2O3·2SiO2) from silica (SiO2) deposition on alumina (Al2O3) cylindrical pieces. The influence of different percentages of yttria (Y2O3) on this superficial reaction is also studied. The alumina matrix is constituted by commercial γ-alumina of 99.99% purity with very high porosity. The cylinders are 3 mm in diameter and 4–6 mm in length. SiO2 is deposited on the cylinders by sol–gel process, from TEOS (tetraethyl orthosilicate, Si(OCH2CH3)4) in ethanol solution. The yttrium oxide is suspended in this solution and then the alumina cylinders constituting the support material are added. Silica is produced by the hydrolysis reaction of the mentioned alkoxide. The molar ratio TEOS/ETOH/H2O is strictly controlled to be 2/4/4. The hydrolysis is carried out in basic medium adding 0.3 ml NH4OH, and at 40°C. The basic medium is used to accelerate the steps of the sol–gel process. The resulting pH before the hydrolysis starts is 9.8. Samples with 2%, 4% and 6% yttria addition were prepared and then heat treated at 1300°C and 1500°C for two hours. For comparative purposes samples without yttria were prepared and treated in the same way. The obtained products were characterized by optical and scanning electron microscopies, electron diffraction analysis X-ray and X-ray diffraction, among other techniques.  相似文献   

17.
A new type of multicoated silica/zirconia/silver (SiO2/ZrO2/Ag) core-shell composite microspheres is synthesized in this paper. In the process, ZrO2-decorated silica (SiO2/ZrO2) core-shell composites were firstly fabricated by the modification of zirconia on silica microspheres through the hydrolysis of zirconium precursor. Subsequently, on SiO2/ZrO2 composite cores, silver nanoparticles were introduced via ultrasonic irradiation and acted as “Ag seeds” for the formation of integrate silver shell by further reduction of silver ions using formaldehyde as reducer. The resulting samples were characterized by transmission electron microscopy, X-ray diffraction, Fourier-transform infrared, energy-dispersive X-ray, and UV-vis spectroscopy, indicating that zirconia and silver layers were successfully coated on the surfaces of silica microspheres.  相似文献   

18.
Attempts at modification of silica surface with a polymer (natural latex) directly in the course of the precipitation process have been made. The effects of temperature, non-ionic surfactants and silane coupling agent in preparation of poly[cis-isoprene]-coated silica on the precipitation of polymer/silica composites initiated by ammonium salts (NH4Cl, (NH4)2SO4, NH4HCO3), have been studied. The influence of the process parameters on the quality of the silicas obtained and the character of the polymer adsorption on the silica surface has been determined along with the effect of the surface impregnation with natural latex on physicochemical parameters of the silicas (bulk density, capacities to absorb water, dibutyl phthalate and paraffin oil) and their surface structure.  相似文献   

19.
The preparation of natural rubber/wood flour (NR/WF) composites and the influence of WF content, modification, and particle size on the vulcanizing behavior, mechanical properties, and water absorption of NR/WF composites are described. Results show that the addition of WF into NR delayed the scorching time and vulcanizing time of NR. The appropriate WF contents can improve the mechanical properties of NR. However, the overloading of WF destroys the mechanical properties of NR. The addition of WF increased the water absorption of NR. The silicone couple agents that were used to modify the WF had little effect on the water absorption of NR/WF composites. Decreasing the WF particle size enhanced the water absorption of NR/WF composites because the water-absorbing surface area increased with decreasing WF particle size. The water absorption of sisal-fiber-filled NR-based composites was larger than that of the WF-filled NR-based composites. A useful equation, w=ktn , was inferred from the water absorption results to calculate the water absorption (w) of the NR/WF composites as a function of time (t), where k was a constant concerning the compounds’ character that was primarily determined by the WF's character and n was the power of time that was related to the NR's inherent character, such as cross-linking density, and primarily determined the water absorption rate.  相似文献   

20.
In this research, a facile route was used to prepare silver nanoparticle-coated precipitated silica using sodium silicate, a cheap precursor. Precipitated silica (PS) was synthesized by dropping 8% H2SO4 into a mixed solution of sodium silicate 24% (Na2O·3.4SiO2) and NaCl 4%; under constant stirring. The precipitated silica was then modified by simultaneous addition of 3-aminopropyltriethoxysilane (3-APTES) and 8% H2SO4. The resulting material was aged at 80 °C for 1 h to produce amino-functionalized precipitated silica (AFPS). Silver nanoparticle-coated precipitated silica (Ag-NPS) was synthesized by adding silver nitrate (AgNO3). The synthesis procedure also involved mixing for 2 h and dropping 0.05 M sodium borohydride (NaBH4). The final products, namely, PS, AFPS, and Ag-NPS were characterized using BET analyzer, FE-SEM, TEM and XRD. Silver nanoparticles with an average size ranging from 18 to 25 nm were found mostly coated on the exterior layer of the precipitated silica. The synthesis method reported in this work is facile and might be used for large-scale industrial production of inexpensive Ag-NPS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号