首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Abstract

A type of micro-multilayer particles with a structure similar to that of nacre was prepared by poly(oxypropylene) diamine (POPD) intercalating organic montmorillonite (OMMT). The prepared particles were then blended with epoxy resin (EP) to obtain high performance EP composites. The Fourier transform infrared spectroscopy, X-ray diffraction, thermogravimetric analysis and contact angle analysis of the OMMT showed that the (POPD) had been successfully intercalated into the OMMT and the micro-multilayer particles were obtained as expected. Transmission electron microscope observation of the cured composites further confirmed that the micro-multilayer particles were well maintained in the EP network. The tensile and bending strength and glass transition temperature of the OMMT/EP composites were all increased compared with those of the EP. All these showed that the addition of the OMMT was an effective way to obtain high performance EP composites.  相似文献   

2.
Rice husk is rich in amorphous silica which has found various applications as a filler in rubbers and plastics. In the research described here silica was extracted from rice husk ash in the form of sodium silicate which was used to produced amorphous precipitated silica (PS) and silica aerogel (SA) using a sol – gel process and supercritical drying. These materials were then physically mixed with unsaturated polyester (UP) resin and cured at room temperature to form polymer composites. The experimental results showed that the UP composites with 30% (volume percent) of SA filler had lower density and better thermal insulation than the composites with the same amount of PS. Thermogravimetric analysis (TGA) results showed that the Tonset of the PS and SA composites were slightly delayed by 15 and 10°C, respectively. The tensile stress-strain curves showed that addition of the fillers reduced the tensile strength, but increased the elastic moduli of the UP matrix. PS filled UP composites exhibit higher moduli (higher stiffness) than that of SA filled UP composites. This was due to agglomeration and poor adhesion of the SA particles to the UP matrix while better dispersion was observed for the PS filled composite.  相似文献   

3.
Polylactide (PLA) composites with acrylic impact modifier BPM, i.e., PLA/BPM composites, were produced by the melt blending method. The effects of BPM on the thermal properties, melting behaviors, and dynamic mechanical properties of the PLA/BPMs were investigated by thermogravimetric analysis, differential scanning calorimetry, and dynamic mechanical analysis. Tensile strength, flexural strength, and modulus of the injection molded specimens were measured by an Instron tensile machine. The influence of BPM on the impact strength of injection molded PLA/BPM composites was examined using an impact tester. The morphology of cryofractured surfaces and fracture surfaces of the composites after the tensile and impact testing was also investigated using scanning electron microscope. The test results show that the composites with BPM possess better flexibility when compared with neat PLA. However, the notched Izod impact strength showed improvement only when the BPM content was higher than 15 wt%.  相似文献   

4.
Epoxy nanocomposites with unmodified multiwalled carbon nanotubes (u-MWCNTs) and silanized multiwalled carbon nanotubes (si-MWCNTs) were prepared by a cast molding method. The effects of 3-aminopropyltriethoxysilane functionalization of MWCNTs on thermal, tensile, and morphological properties of the nanocomposites were examined. The nanocomposites were characterized by thermogravimetric analysis, dynamic mechanical thermal analysis, and tensile testing. The results showed that epoxy composites based on si-MWCNTs showed better thermal stability, glass transition temperature, and tensile properties than the composites based on u-MWCNTs. These results prove the effect of silane functionalization on the interfacial adhesion between epoxy and MWCNTs. This was further confirmed by morphology study of fractured surfaces of nanocomposites by field emission scanning electron microscopy.  相似文献   

5.
《Composite Interfaces》2013,20(7-9):849-867
Commingled polypropylene (PP)/banana granules were fabricated from slivers by mixing PP fibers and banana fibers by textile equipment. By twisting the sliver, the reinforcing fibers were compacted and bonded with the molten matrix material. PP/banana composites were prepared from commingled PP/banana granules by injection moulding method with special reference to the effect of maleic anhydride modified polypropylene (MAH-PP) concentration. The mechanical properties of the composites were found to depend on the concentration of MAH-PP. The tensile and flexural properties of the composites increased with the addition of MAH-PP up to 2 wt%. After 2 wt% addition of MAH-PP, these properties tend to be stabilized. On the other hand the unmodified composites showed the maximum impact strength. Fourier transform infrared spectroscopic (FTIR) analysis of the MAH-PP modified composites showed evidence of a chemical bridge between the hydroxyl group of the banana fiber and maleic anhydride of the MAH-PP through an esterification reaction. The feature peak of the esterification occurred in the range ~ 1743 cm?1. In order to confirm the esterfication reaction further, FTIR spectra of the banana microfibrils and MAH-PP modified PP/banana microfibril composites were taken and compared. The tensile fracture surfaces of the unmodified and MAH-PP modified PP/banana composites were studied by scanning electron microscopy (SEM). An improvement in adhesion between the fiber and the matrix was observed in the case of MAH-PP modified composites. Two different processing methods, both injection and compression mouldings were performed to prepare the PP/banana composites. Tensile properties of the composites prepared by these two methods were compared. The enhancement of tensile properties for injection-moulded composites compared to the compression-moulded composites is owing to the occurrence of orientation, better mixing and interaction between the fiber and the matrix during injection moulding. Finally, experimental results of the tensile properties of the injection-moulded composites have been compared with theoretical predictions.  相似文献   

6.
A series of micro hollow glass beads (HGB) filled castor oil-based polyurethane/epoxy resin graft interpenetrating polymer network (IPN) composites were prepared. The tensile and impact strengths, impact fractured surfaces, damping properties and thermal stability of the IPN composites were studied systematically in terms of composition. Results revealed that the addition of HGB into polyurethane/epoxy IPN can significantly improve not only the tensile strength but also the impact strength. The tensile strength was increased by 61% and at the same time the impact strength was increased by 25% when the HGB content was 1.5%. The damping properties were better than the composition of 0.5% or 2% HGB content when the HGB content was 1% or 1.5%. The thermal decomposition temperature was also slightly improved by the incorporation of HGB. It is suggested that the HGB reinforced polyurethane/epoxy resin IPN composites could be used as structural damping materials.  相似文献   

7.
Tough and flexible dielectrics were prepared using graphite (G), a natural and low-cost resource, as filler in polystyrene-b-(ethylene-co-butylene)-b-polystyrene (SEBS) and maleinized SEBS (SEBS-MA) matrices. The disintegration of graphite in submicron particles was accomplished by the shear forces during the melt processing step and it was highlighted by atomic force microscopy. Simultaneous increase of tensile strain, strength and Young's modulus was noticed for SEBS/G and SEBS-MA/G composites compared to unfilled matrices, this remarkable feature being previously reported only for some nanocomposites. Moreover, an exponential variation of the dielectric permittivity with the volume fraction of G was obtained. Higher reinforcing efficiency and better dielectric properties were observed in SEBS-MA/G composites, compared to the corresponding SEBS/G composites, due to the stronger polymer–filler interface and better dispersion of graphite. This study brings new insights into nanolevel properties of SEBS composites and it opens new perspectives on high performance composites by using graphite instead of expensive graphene and efficient melt mixing process.  相似文献   

8.
Carbon fiber (CF) / poly (ethylene terephthalate) (PET) composites were prepared with various contents (2–15wt%) of short carbon fibers. To investigate the effect of surface treatment of the CF on the mechanical properties of the composites, three specimens were prepared; those with short carbon fibers (called SCF), short carbon fibers oxidized with nitric acid (called NASCF) and the fibers oxidized with nitric acid and treated with silane coupling agent (called SCSCF). Flexural, tensile and impact tests were performed to observe mechanical behavior of the specimens. The morphology of the specimens was also studied with a scanning electron microscope (SEM). SCSCF composite had better mechanical properties than the other composites with the same content of carbon fibers since the coupling agent resulted in better interfacial adhesion between the fiber and the matrix.  相似文献   

9.
The wet skid resistance (WSR) of SSBR/BR(solution styrene-butadiene rubber/butadiene rubber) composites filled with carbon black, silica, and nano-diamond partly replacing carbon black or silica, respectively, was measured with a portable British Pendulum Skid Tester (BPST). A dynamic mechanical thermal analyzer was used to obtain the viscoelasticity of the composites. A 3D scanning white-light interfering profilometer was used and the scratch test performed to characterize surface roughness and micro-roughness, respectively, of the composites. WSR of the silica-filled composite was better than that of the carbon black-filled one, and further enhancement of WSR was obtained by replacing silica with nano-diamond. Tan δ of the composites at 0 °C, 10 Hz, and tensile strain of 2% did not show good correlation with WSR. The surface roughness of the composites had effects on WSR. The scratch test indicated that the higher the hardness of the filler in the composite, the higher the micro-hardness and the better the WSR. Therefore, the surface micro-hardness of the composites is an important factor affecting WSR, besides viscoelasticity and surface roughness.  相似文献   

10.
Dynamic tensile properties of glass-fiber polymer composites embedded with ZnO nanowhiskers are investigated by a split Hopkinson tensile bar. The stress-strain curves, ultimate strength, failure strain and elastic modulus are obtained and the failure mechanism of the composites is investigated by the macroscopic and microscopic observation of fractured specimens. The strain rate effect on the mechanical behavior is discussed and a constitutive model is derived by simulating the experimental data. The experimental results show that the materials have an obvious non-linear constitutive relation and strain rate strengthening effect. The composites with ZnO nanowhiskers under dynamic loading have various failure modes and better mechanical properties.  相似文献   

11.
Polyamide (PA) 66/PP-g-MA/Organic-modified MMT (OMMT) ternary composites were prepared by direct melt compounding. The FESEM results showed that the PP-g-MA phase dispersed homogeneously in the PA matrix due to the interfacial chemical reactions between the two phases. The mechanical properties of the composites were evaluated. The tensile and bending properties decreased and the notched impact strength increased with the increase of PP-g-MA. The tribological behaviors of the ternary composites were studied by means of a ball-on-disk apparatus. The ternary composites exhibited better tribological properties compared with the PA/OMMT system. This was probably due to the fact that the PP has good flexibility and a transferring film could be formed easily on the counterpart. Combining the results of the mechanical and tribological properties, the optimal mass fraction of PP-g-MA was 10 wt. %.  相似文献   

12.
《Composite Interfaces》2013,20(2-3):97-114
In the present work, the deformation and fracture behavior of PP/ash composites with different ash content was investigated. The effect of a silane coupling agent was also analyzed. From uniaxial tensile tests, an increase in the stiffness with ash content was found as a result of the incorporation of the stiffer filler within the PP matrix. On the other hand, a decrease in tensile strength and strain at break with filler loading was observed. This result was attributed to the increased number of debonded large particles with filler content, which subsequently led to the formation of critical-size flaws. On the other side, the composites displayed higher values of fracture parameters than the matrix as a result of the development of a particle induced toughening mechanism. However, fracture properties were also found to decrease with ash content. This could be attributed to the increase in the number of critical-size flaws that induced premature failure. The incorporation of a silane coupling agent in the formulations led to composites with slightly improved tensile and fracture properties. This was probably due to improved interaction between PP and ash in the first case and a better dispersion of ash particles in the matrix and/or changes in the crystallization behavior of PP, in the latter case.  相似文献   

13.
The influence of multi-walled carbon nanotubes (MWCNTs) on the crystallization and directional tensile properties of high-density polyethylene (HDPE) was studied for samples prepared by dynamic-packing injection molding (DPIM). Oscillatory shear was imposed on the gradually cooled melt during the packing solidification stage of DPIM. For the oriented composites containing 1.8 wt% MWCNTs, the tensile fracture behavior showed typical brittle features along the flow direction (FD) and perpendicular direction (PD), which were almost the same as those that occurred in oriented pure HDPE. The elongation at break along both directions decreased due to the incorporation of MWNCTs in the oriented composites compared with the oriented pure HDPE. However, the tensile strength of the oriented HDPE/MWCNT composites was greatly improved along the FD due to the presence of carbon nanotubes; meanwhile, it was not weakened along the PD. In scanning electron microscopy observations, it was found that there were some oriented hybrid shish-kebab structures in a nanometre scale in the oriented HDPE/MWCNT composites, but not in its isotropic composites. This suggests that MWCNTs were involved in the shear-induced crystallization of HDPE. Differential scanning calorimetry measurements confirmed that the crystallinity of oriented HDPE composites with 1.8 wt% MWCNTs was higher than those of isotropic HDPE and isotropic composites, but was not obviously higher than that of oriented pure HDPE. These findings demonstrate that MWCNTs indeed affected the formation of crystalline structures, but did not greatly influence the crystallinity of HDPE under shear flow. The transition of crystalline morphology might be the reason for change in tensile behavior for the oriented HDPE/MWCNT composites compared with the oriented pure HDPE.  相似文献   

14.
Composites composed of the mixed fibers of L-lactide (LA) grafted sisal fiber (SF-g-LA) and untreated sisal fiber (USF) in a poly (lactic acid) (PLA) matrix were prepared with SF-g-LA/USF fibers ratios of 0, 1:9, 3:7, 5:5, 7:3, 9:1, and 1. The mechanical properties and the interfacial performance of the mixed SF reinforced PLA composites were investigated. The results of the study showed that the introduction of SF-g-LA improved the tensile strength, tensile modulus, flexural strength and flexural modulus of the mixed SF reinforced PLA composites compared with pure PLA or PLA composites with only USF, resulting from the improved interfacial adhesion between SF-g-LA and the PLA matrix. In addition, the introduction of some amount of USF enhanced the reinforcing efficiency of the mixed SF in the composites compared to the PLA composites with only SF-g-LA, owing to the good mechanical properties of USF itself. Furthermore, as for the tensile strength and tensile modulus of the mixed SF reinforced PLA composites, the optimal ratio of SF-g-LA and USF was 7:3, whereas for the flexural modulus of the mixed SF reinforced PLA composites, the optimal mixed ratio of SF-g-LA and USF was 3:7.  相似文献   

15.
A study on the polymerization and characterization of poly (methyl methacrylate)/organo‐montmorillonite (PMMA/OMMT) nano‐composites is reported. An effective method through emulsion polymerization was carried out for the preparation of nanocomposites using a redox initiation system; ammonium persulfate was used as the oxidizing agent and sodium sulfite as the reducing agent. The structure and morphology of the nanocomposites were studied by X‐ray diffraction and transmission electron microscopy and the exfoliated morphology was confirmed. The thermal properties were analyzed by thermogravimetric analysis and differential scanning calorimetry. It was found that the thermal properties were enhanced with the addition of organo‐montmorillonite.  相似文献   

16.
《Composite Interfaces》2013,20(2):171-205
Sisal fibers have been used for the reinforcement of polypropylene matrix. The compatibilization between the hydrophilic cellulose fiber and hydrophobic PP has been achieved through treatment of cellulose fibers with sodium hydroxide, isocyanates, maleic anhydride modified polypropylene (MAPP), benzyl chloride and by using permanganate. Various fiber treatments enhanced the tensile properties of the composites considerably, but to varying degrees. The SEM photomicrographs of fracture surfaces of the treated composites clearly indicated the extent of fiber–matrix interface adhesion, fiber pullout and fiber surface topography. Surface fibrillation is found to occur during alkali treatment which improves interfacial adhesion between the fiber and PP matrix. The grafting of the fibers by MAPP enhances the tensile strength of the resulting composite. It has been found that the urethane derivative of polypropylene glycol and cardanol treatments reduced the hydrophilic nature of sisal fiber and thereby enhanced the tensile properties of the sisal–PP composites, as evident from the SEM photomicrographs of the fracture surface. The IR spectrum of the urethane derivative of polypropylene glycol gave evidence for the existence of a urethane linkage. Benzoylation of the fiber improves the adhesion of the fiber to the PP matrix. The benzoylated fiber was analyzed by IR spectroscopy. Experimental results indicated a better compatibility between benzoylated fiber and PP. The observed enhancement in tensile properties of permanganate-treated composites at a low concentration is due to the permanganate-induced grafting of PP on to sisal fibers. Among the various treatments, MAPP treatment gave superior mechanical properties. Finally, experimental results of the mechanical properties of the composite have been compared with theoretical predictions.  相似文献   

17.
An amino-functionalized montmorillonite (APTMS-MMT) was prepared by the grafting of 3-aminopropyltrimethoxysilane (APTMS) on the surface of MMT via the ultrasonic synthesis process and characterized by a variety of techniques: FT-IR, thermogravimetic analysis (TGA), particles size analysis and ζ-potential measurement. The results showed the size and size distribution of APTMS-MMT particles were decreased, and the ζ-potential of particles was increased obviously via the ultrasonic synthesis process. The particles of 30% APTMS-MMTUS (MMT modified with 30 wt% APTMS with ultrasonic synthesis process) had a z-average diameter of about 500 nm and a polydispersity index of 0.2. The resultant 30% APTMS-MMTUS was dispersed uniformly and stably in water. The poly(acrylic acid) (PAA)/APTMS-MMT multilayer films were grown through layer-by-layer (LBL) deposition of PAA and APTMS-MMT. SEM results indicated that the ultrasonic synthesis of APTMS-MMT increased dispersability of clay sheets at high loadings. The thermal stability and mechanical properties of PAA/APTMS-MMT composites were investigated by TGA and tensile test respectively. The results showed the ultrasonic synthesis of APTMS-MMT enhanced the thermal stability and mechanical properties of PAA/APTMS-MMT composites significantly. PAA/30% APTMS-MMTUS composite displayed 3 times higher strength and 6 times higher Young's modulus when compared with pure PAA polymer.  相似文献   

18.
《Composite Interfaces》2013,20(7-9):631-646
Unidirectional isora fibre reinforced polyester composites were prepared by compression moulding. Isora is a natural bast fibre separated from the Helicteres isora plant by a retting process. The effect of alkali treatment on the thermal properties of the fibre was studied using TGA, DTA and DSC in oxygen and nitrogen atmosphere. Mechanical properties like tensile strength, Young's modulus, flexural strength, flexural modulus and impact strength of the composites containing untreated and alkali-treated fibres have been studied as a function of fibre loading. The optimum loading for tensile properties of the composite containing untreated fibre was found to be 45% by volume and on alkalization of the fibre, the optimum loading increased to 66%. For flexural properties the loading was optimized at about 56% and 66%, for the composites containing untreated and alkali treated fibres, respectively. From DMA studies it was observed that the alkali-treated fibre composites have higher E′ and E″ values compared to untreated fibre composites. From swelling studies in styrene it was observed that the mole percent uptake of the solvent by the treated fibre composites is less than by the untreated fibre composites. From these results it can be concluded that in composites containing alkalized fibres there is enhanced interfacial adhesion between the fibre and the matrix leading to better properties, compared to untreated fibre composites.  相似文献   

19.
This work focuses on the chemical modification of montmorillonite (MMT) (Cloisite® Na) with compatible silanes, vinyltriethoxysilane (CVTES) and γ-methacryloxypropyltrimethoxysilane (CMPS) in order to prevent agglomeration and to improve montmorillonite interaction with an unsaturated polyester resin matrix seeking to achieve a multifunctional composite. Clays were dispersed in the resin by mechanical stirring and sonication and the nanocomposites were prepared by resin transfer into a mold. The mechanical, morphological, thermal and flammability properties of the obtained composites were compared with those prepared using commercial Cloisite® 30B (C30B) and Cloisite® 15A (C15A) clays. Advantages of using silane-modified clays (CVTES and CMPS) as compared with organic-modified clays (C30B and C15A) can be summarized as similar flexural strength and linear burning rate but higher storage modulus and improved adhesion to the polyester resin with consequent higher thermal deflection temperature and reinforcement effectiveness at higher temperatures. However, organic modified clays showed better dispersion (tendency to exfoliate) and consequently delayed thermal volatilization due to the clay barrier effect.  相似文献   

20.
Polymer/conductive ceramic composites with high dielectric constant have become research hotspot of dielectric capacitor materials. However, the conductivity and dielectric loss increase when high dielectric constant is achieved. In order to reconcile high dielectric constant and low dielectric loss, in this study, poly (vinylidene fluoride) (PVDF)/chromium carbide (Cr2C3)/montmorillonite (MMT) ternary composite films were prepared by solution cast. Dielectric response based on interfacial polarization was improved and dielectric constant of composites was increased. MMT ceramic was used to suppress interface leakage current. Compared with PVDF/Cr2C3 composites, the conductivity and dielectric loss of ternary composites were reduced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号