首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ultrahigh molecular weight polyethylene (UHMWPE) fibers were treated with a coupling agent following the extraction of gel fibers, resulting in modified fibers after subsequent ultra-drawing. The structure and morphology of the modified UHMWPE fibers were characterized and their surface wetting, interfacial adhesion, and mechanical properties were investigated. It was found that the coupling agent was absorbed into the UHMWPE fiber and trapped on the fiber surface. Compared with unmodified UHMWPE fibers, the modified fibers had smaller contact angle, higher crystallinity, and smaller crystal size. The interfacial adhesion and mechanical properties of UHMWPE fibers were significantly improved with increasing coupling agent concentration and gradually reached a plateau value. After treatment with 1.5 wt% solution of a silane coupling agent (γ -aminopropyl triethoxysilane, SCA-KH-550), the interfacial shear strength of the UHMWPE-fiber/epoxy composites was increased by 108% and the tensile strength and modulus of modified UHMWPE fibers were increased by 11% and 37% respectively.  相似文献   

2.
The preparation, crystallization behavior, and fiber structure and properties of ultrahigh molecular weight polyethylene (UHMWPE) epoxy resin composite fiber were studied by means of differential scanning calorimeter (DSC), X‐ray diffraction (XRD), Scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and tensile testing. The morphology showed a different behavior from pure polyethylene (PE) fiber. The fiber mechanical properties, creep behavior, and thermal properties of UHMWPE fiber can be improved by adding epoxy resin. It's believed that the epoxy can serve as a physical cross‐linking agent to limit the motion or migration of PE molecules and consequently improve the fiber creep property. However, when the content of epoxy resin is higher than 5 wt%, all of the behavior and properties deteriorate.  相似文献   

3.
The waste management of glass fiber reinforced polymer (GRP) materials, in particular those made with thermosetting resins, is a critical issue for the composites industry because these materials cannot be reprocessed. Therefore, most thermosetting GRP waste is presently sent to landfill, in spite of the significant environmental impact caused by their disposal in this way. The limited GRP waste recycling worldwide is mostly due to its intrinsic thermosetting properties, lack of characterization data and unavailability of viable recycling and recovery routes. One of the possibility for re-using GRP industrial by-product is in form of powder as a partial aggregate replacement or filler addition in cement based composites for applications in sustainable construction materials and technologies. However, the feasibility of this kind of reutilization strongly depends on the morphology and particle size distribution of a powder made up of polymer granules and glass fibers. In the present study, the use of image analysis method, based on scanning electron microscopy (SEM) and ImageJ processing program, is proposed in order to evaluate the morphology of the particles and measure the particle size and size distribution of fine GRP waste powder. The obtained results show a great potential of such a method in order to be considered as a standardized method of measurement and analysis in order to characterize the grain size and size distribution of GRP particles before exploiting any compatibility issue for its recycling management.  相似文献   

4.
Ultrasonic injection moulding was confirmed as an efficient processing technique for manufacturing ultra-high molecular weight polyethylene (UHMWPE)/graphite composites. Graphite contents of 1 wt%, 5 wt%, and 7 wt% were mechanically pre-mixed with UHMWPE powder, and each mixture was pressed at 135 °C. A precise quantity of the pre-composites mixtures cut into irregularly shaped small pieces were subjected to ultrasonic injection moulding to fabricate small tensile specimens. The Taguchi method was applied to achieve the optimal level of ultrasonic moulding parameters and to maximize the tensile strength of the composites; the results showed that mould temperature was the most significant parameter, followed by the graphite content and the plunger profile. The observed improvement in tensile strength in the specimen with 1 wt% graphite was of 8.8% and all composites showed an increase in the tensile modulus. Even though the presence of graphite produced a decrease in the crystallinity of all the samples, their thermal stability was considerably higher than that of pure UHMWPE. X-ray diffraction and scanning electron microscopy confirmed the exfoliation and dispersion of the graphite as a function of the ultrasonic processing. Fourier transform infrared spectra showed that the addition of graphite did not influence the molecular structure of the polymer matrix. Further, the ultrasonic energy led oxidative degradation and chain scission in the polymer.  相似文献   

5.
In this study, natural fibers (agave, coir, and pine) were surface treated with maleated polyethylene (MAPE) with two main objectives: (1) to improve the mechanical properties of natural fiber composites produced by rotational molding and (2) to increase the fiber content in the composite. The rotomolded composites were produced at 0, 10, 20, 30, and 40% wt. of fiber contents (treated or untreated) and characterized in terms of morphology and mechanical properties (hardness, impact, tension, and flexion). The results showed that MAPE surface treatment was more successful for agave and coir than for pine fibers due to their respective chemical composition. In general, surface treatment led to better fiber distribution and a more uniform composite morphology allowing the possibility to use higher fiber contents in rotational molding. At low fiber contents (10 and 20% wt.), the mechanical properties were improved using treated fiber composites (TFC) compared to the neat polymer and untreated fiber composites (UFC). Although the mechanical properties of TFC decreased at high fiber contents (30 and 40% wt.), they were substantially higher (about 160, 400, and 100% for impact, tensile, and flexural properties, respectively) than for UFC.  相似文献   

6.
7.
A new method to prepare single-polymer high-density (HDPE)-ultra high molecular weight polyethylene (UHMWPE) fiber (PE-PE homocomposites) composed and also PE-PE homocomposites containing HDPE organo montmorillonite clay (OMMT) nanocomposites as a matrix (PE nanohomocomposites) was used. Owing to the major importance of fiber impregnation by the matrix and its effect on the adhesion of matrix/fiber and, consequently, the mechanical properties of the composite, a combination of powder impregnation and film stacking methods, utilizing compression molding, were used for manufacturing the PE-PE homocomposites and PE nanohomocomposites. In addition, PE nanohomocomposites with the matrix containing different amounts of nanoclay were prepared to investigate the effect of the clay on the interfacial and mechanical properties of the PE-PE nanohomocomposites. Several different processing conditions were examined to determine the best conditions for manufacturing of the PE-PE homocomposite and PE nanohomocomposites and it was concluded that 40 bar and 10 min of compression molding resulted in the highest overall mechanical properties. The PE-PE homocomposites and PE-PE nanohomocomposites showed identical trends for the relationship between the effects of processing conditions and mechanical properties. Mechanical results demonstrated that clay platelets could increase the interfacial strength by improving physical entanglements between fiber and matrix through better cocrystallization.  相似文献   

8.
The purpose of this study is to increase the interfacial properties in PMMA/carbon fiber (PMMA/CF) composites Graphene oxide (GO) and brached polyethyleneimine were coated onto the surface of carbon fiber by layer-by-layer assembly in this work. Compared with the origin PMMA/CF composite, the composites reinforced by PMMA/CF–GO showed significant enhancement in interFacial shear strength (IFSS). The improved fiber–matrix adhesion was proved by fracture morphology observation of scanning electron microscopy and almost unaffected mechanical properties of the fiber itself during the coating process. The optimal assembly time was found to be 10 for enhancing the overall composite mechanical performance.  相似文献   

9.
In this paper, the effect of nanocomposite compatibilizer type on the interfacial adhesion and mechanical properties of new class of polyethylene (PE) homocomposites, comprising PE/clay nanocomposites as matrix and ultra high molecular weight polyethylene (UHMWPE) fibers as reinforcement, was investigated. These were manufactured by a combination of powder impregnation and film stacking methods, introduced in previous research. Three types of high-density polyethylene (HDPE) Nanocomposites were prepared based on the various compatibilizers used: (i) nanocomposites containing HDPE-grafted maleic anhydride (HDPE-g-MA) as compatibilizer of clay and HDPE matrix, (ii) linear low-density polyethylene-grafted maleic anhydride (LLDPE-g-MA) used as compatibilizer, and (iii) nanocomposites without any compatibilizer. The effects of the presence and compatibilizer type on the quality of clay dispersion, and also the interface features of HDPE-nanocomposite and UHMWPE fibers were investigated and compared with each other. The results demonstrated that the kind of compatibilizer was an important factor determining the dispersion state of clay platelets, and influenced the UHMWPE fiber–PE matrix interface adhesion and the mechanical properties of the PE nano-homocomposites.  相似文献   

10.
Abstract

A solvent-free route to high performance ultra-high molecular weight polyethylene (UHMWPE) film threads is currently under intensive development. It involves compaction/sintering of UHMWPE reactor powder at T?<?Tm followed by orientation hardening of the sintered film cut into narrow strips. However, not any kind of reactor powder can be transformed into the desired high-performance material. The presence of a monoclinic crystalline phase (MP) in the powder is considered as one of the key parameters indicating its applicability for solvent-free processing. Since the MP is stable only under stress, the assumption has been made that the observed MP is generated during tableting for X-ray analyses rather than during synthesis of the nascent powder. We show that comparative X-ray analysis of a tablet and a single “virgin” particle using synchrotron radiation indicates that the MP content in the virgin particle was far less than that in the compressed tablet. Only the (001) MP peak was resolved while the others were severely overlapped with the normal, orthorhombic reflections. Thus, it supports our idea that the widely observed MP phase is, for the most part, generated during the sample preparation for the X-ray analyses.  相似文献   

11.
Banana fiber (BF)-reinforced low-density polyethylene (LDPE) unidirectional composites were fabricated by the compression molding process with 40 wt% fiber loading. The fibers were modified with methylacrylate (MA) mixed with methanol (MeOH) along with 2% benzyl peroxide under thermal curing method at different temperatures (50–90 °C) for different curing times (10–50 min) in order to have better compatibility with the matrix. The effect of fiber surface modification on the mechanical properties (tensile and impact properties) of the composites were evaluated. Monomer concentration, curing temperature, and curing time were optimized in terms of polymer loading and mechanical properties. The mechanical properties were found to be improved based on the improved interaction between the reinforcement and the matrix. Optimized BFs were again treated with 2–5 wt% starch solutions and composites made of 4% starch treated BF showed the highest mechanical properties than that of MA treated composites. Scanning electron microscopy (SEM) was performed to get an insight into the morphology of the composites. Water uptake and soil degradation test of the composites were also investigated.  相似文献   

12.
In the present work, the building panel of glass fiber reinforced polyvinylidene chloride composite was prepared and the tensile fracture surfaces of the composites were investigated by the box-counting method of multifractal theory. It suggested that the tensile fracture surface of polyvinylidene chloride/glass fiber (PVDC/GF) composite exhibits multifractal features and the tensile fracture surface morphology of the composite have a strong dependence on the mechanical properties. The results showed that the variation of glass fiber content would lead to the change of mechanical properties, which were responsible for the tensile fracture morphology of PVDC/GF composite. Consequently, the gray value distribution characterizing the surface morphology on the tensile fracture surface would become more non-uniform or less due to this change. The multifractal spectrum could correspondingly mirror this variation according to multifractal methodology. It indicated that the width in multifractal spectrum is sensitive to the morphology of the tensile fractured surface. It is concluded that the multifractal spectrum is the result of the change in mechanical properties of the composites. Additionally, it also suggested that the tensile fracture of the composite is the result of the competition between ductile fracture and brittle fracture by comparing the multifractal spectra and the multifractal spectra would correspondingly change due to this competition. The more the percentage of ductile fracture is, the more rough the fracture surface, the larger the width in the multifractal spectrum. Therefore, it is thought that the multifractal spectrum could feature the rough morphology of the tensile fractured surface and the mechanical properties quantitatively.  相似文献   

13.
Controlling interfacial microstructure and interactions between (ultra high molecular weight polyethylene) UHMWPE fiber and matrix is of crucial importance for the fabrication of advanced polymer composites. In this paper, (UHMWPE fiber-g-graphene oxide [GO]) was prepared. GO nanoparticles distributed onto the ?ber surface uniformly, which could increase surface polarity and roughness. Increases of interlaminar shear strength (ILSS) and interfacial shear strength (IFSS) of UHMWPE fiber-g-GO composites were achieved. These enhancements can be attributed to the existent of GO interface with providing chemical bonding and strong mechanical interlocking between the ?ber and matrix. Moreover, impact resistance of UHMWPE fiber-g-GO composites was enhanced.  相似文献   

14.
《Composite Interfaces》2013,20(5):321-332
Within the framework of this study, the physical modification of high-density polyethylene waste foil was performed using finely ground hazelnut flour to produce a composite whose physical, mechanical and flammable properties make it possible to use inside and outside of buildings. Three mixtures were produced with filler shares of 11, 26 and 42 vol.% using equipment that is normally used in polymer processing, and no refining additives were applied. The produced materials were analysed for their processing (mass flow ratio), physical (density and moisture content) and mechanical properties (tensile strength, elongation at break and dynamic thermal analysis) and resistance to environmental factors (swelling and water absorption, thermogravimetric analysis and combustion heat). The particle size distribution of the filler and morphological properties of the composites (scanning electron microscopy) were also investigated. It was vital to obtain an inexpensive material with low absorptivity. The resulting materials are characterised by a low density, acceptable low absorptive and good mechanical properties; also, they can constitute an important fuel once their practical properties have been exploited.  相似文献   

15.
Yin Jian  Li Ming 《Composite Interfaces》2018,25(12):1115-1125
The mechanical properties of bamboo fiber composites depend on the interfacial strength between fiber and high-density polyethylene (HDPE) matrix. Different poly (amido amine) (PAMAM) dendrimers were grafted onto bamboo fiber to improve the interfacial strength of the resulting composites. The surface morphology of the resulting materials was characterized by scanning electron microscopy and atomic force microscope. Surface characteristic the bamboo fiber surface were examined by X-ray photoelectron spectroscopy and Fourier transform infrared (FT-IR). The characterization results revealed that PAMAM were chemically grafted onto the surface of bamboo fiber.  相似文献   

16.
Multiscale glass fiber epoxy matrix composites containing nanodiamonds were fabricated using vacuum bagging technique. Three different loadings of nanodiamonds were incorporated in epoxy resin after their functionalization through ozone-treatment, i.e., 0.1, 0.3 and 0.5 wt%. The functionalization of nanodiamonds was confirmed by infrared spectroscopy, which improved the dispersion of nanodiamond in epoxy resin thus improving the mechanical properties. Tensile, compression, flexural and interlaminar shear properties of the composites were improved. The tensile, compression and flexural strengths improved up to 36, 56 and 30% by the addition of 0.5 wt% nanodiamonds while the corresponding moduli increased to 30, 125 and 46%, respectively. An improvement of 38% in interlaminar shear strength was observed. The microscopy of the composites was performed using optical and electron microscopy and proper impregnation of glass fibers and the absence of the agglomerates of nanodiamonds were ensured. The homogeneous dispersion of nanodiamonds and their adhering role at fiber/matrix interface improved the mechanical properties of the composites. The developed composites are ideal candidate materials for engineering applications demanding high specific mechanical properties.  相似文献   

17.
《Composite Interfaces》2013,20(2-3):297-317
In this paper an attempt was made to define microstructural properties of carbon fiber/PP composites, with respect to fiber surface chemistry and morphology. In order to define the effects of the fiber surface sizings and morphology on the polymer microstructure, the interphase and mechanical properties of the composites, carbon fibers with similar, but not identical surface chemistry (CH and CT) were used. Characterization was performed by several techniques: SEM, POM, reflection microscopy, DSC, FTIR, XPS, contact angle measurements. For microstructural analysis, the geometrical method, method of intercept and DIF method were used. It was found that both carbon fibers have a strong influence on the nucleation mechanism and crystallization as well as on the microstructural parameters in the model and macro composites. Nucleation efficiency of the fibers has been confirmed by the nucleation parameter Q, measured by Muchova–Lednicky method and by the interfacial energy parameters. Microstructural analysis based on the photographs obtained by POM, SEM and reflection microscopy has shown that in the CH/PP model and macrocomposites the sieve-grain network was formed, which indicates better mechanical properties. The results obtained for the macromechanical properties of PP composites reinforced with CH and CT have confirmed the prediction based on micostructural analysis.  相似文献   

18.
This work studied the effects of matrix powder and sintering temperature on the microstructure and mechanical properties of in situ formed Ti–Al3Ti core–shell-structured particle-reinforced pure Al-based composites. It has been shown that both factors have significant effects on the morphology of the reinforcements and densification behaviour of the composites. Due to the strong interfacial bonding and the limitation of the crack propagation in the intermetallic shell during deformation by soft Al matrix and Ti core, the composite fabricated using fine spherical-shaped Al powder and sintered at 570 °C for 5 h has the optimal combination of the overall mechanical properties. The study provides a direction for the optimum combination of high strength and ductility of the composites by adjusting the fabrication parameters.  相似文献   

19.
The mechanical properties of carbon fiber reinforced polymer composites depend upon fiber-matrix interfacial properties. To improve the mechanical properties of ?bers/PTFE composites without sacri?cing tensile strength of ?bers, graphene oxide (GO) was introduced onto the surface of CFs by chemical vapour deposition (CVD). This hybrid coating increased the wettability and surface roughness of carbon fibers, which led to improved affinity between the carbon fibers and PTFE matrix. The resulting hybrid-coated carbon fiber-reinforced composites showed an enhancement in the short beam strength compared to un-coated carbon fiber composites. Meanwhile, a signi?cant increase of interlaminar shear strength (ILSS), interface shear strength tests (IFSS) and impact property were achieved in the 5-min-modi?ed CFs.  相似文献   

20.
《Composite Interfaces》2013,20(3):201-223
Mechanical properties of pineapple leaf fiber reinforced low density polyethylene composites have been studied with special reference to the effects of interface modifications. Various chemical treatments using reagents such as NaOH, PMPPIC, silane and peroxide were carried out to improve the interfacial bonding. Both infrared spectroscopy and SEM were used to characterize the interface and the modified fiber surface. It has been found that the treatments improved the mechanical properties significantly. However, the effect varied according to the nature of the treatments. SEM studies on the fracture surfaces revealed the extent of fiber-matrix adhesion. It has been observed that the PMPPIC treatment reduced the hydrophilicity of the fiber and thereby enhanced the mechanical properties of the composites. The addition of a small quantity of peroxide and silane increased the mechanical properties considerably. The action of peroxide is associated with the peroxide-induced grafting of polyethylene on the fiber surface. Among the various treatments, PMPPIC treatment of fiber exhibits maximum interfacial interactions. Attempts have been made to illustrate the interfacial bonding with the help of schematic models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号