首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Composite Interfaces》2013,20(4):301-318
Polyacrylamide (PAM) doped by multiwalled carbon nanotube (MWNT) gels were prepared with different amounts of MWNTs varying in the range between 0.1 and 15 wt%. The PAM–MWNT composite gels were characterized by the steady state fluorescence technique (SSF). The alternative electrical conductivity (AC) of PAM–MWNT composite gels was measured by the dielectric spectroscopy technique. Observations around the gel point, t gel for PAM–MWNTs composite gels showed that the gel fraction exponent β obeyed the percolation result. The critical exponent r of AC electrical conductivity for the composite PAM–MWNT gel was also measured and found to be about 2.0, which agrees with a random resistor network.  相似文献   

2.
Linear low‐density polyethylene (LLDPE)/multiwalled carbon nanotube (MWNT) nanocomposites were prepared via melt blending. The morphology and degree of dispersion of nanotubes in the polyethylene matrix were investigated using scanning electron microscopy (SEM). Both individual and agglomerates of MWNTs were evident. The rheological behavior and mechanical and electrical properties of the nanocomposites were studied using a capillary rheometer, tensile tester, and Tera ohm‐meter, respectively. Both polyethylene and its nanocomposites showed non‐Newtonian behavior in almost the whole range of shear rate. Addition of carbon nanotubes increased shear stress and shear viscosity. It was also found that the materials experience a fluid‐solid transition below 1 wt% MWNT. Flow activation energy for the nanocomposites was calculated using an Arrhenius type equation. With increasing nanotube content, the activation energy of flow increases. A decrease of about 7 orders of magnitude was obtained in surface and volume resistivity upon addition of 5 wt% MWNT. In addition, a difference between electrical and rheological percolation thresholds was observed. The results confirm the expected nucleant effect of nanotubes on the crystallization process of polyethylene. A slight increase in Young's modulus was also observed with increasing MWNT content.  相似文献   

3.
Porous hydrogel blends composed of various weight ratios of hyaluronic acid (HA) and gelatin (Gel) were fabricated by a freeze-drying method. The 1-ethyl-3(3-dimethylaminopropyl) carbodiimide (EDC) was used as a crosslinker to improve their biostability. The effect of the component and crosslinker content on the morphology, swelling ratio (SR), and mechanical properties were investigated. The results indicated that after chemical crosslinking the hydrogel showed a smoother and denser surface with less pores and a crosssection with smaller pores than that without crosslinking. The crosssection morphologies of the HA/Gel hydrogels changed from a sheet-like appearance to a fiber-like appearance with increasing HA content. The addition of HA improved the swelling property, but reduced the compressive strength. As the crosslinker content increased, the SR decreased; however, the compressive strength of the HA/Gel hydrogels increased. All these results suggest that HA/Gel hydrogel crosslinked by EDC is a potential candidate for tissue engineering scaffolds.  相似文献   

4.
The rheology and morphology of multi-walled carbon nanotube (MWNT)/polypropylene (PP) nanocomposites prepared via melt blending was investigated. The minor phase content of MWNT varied between 0.25 and 8 wt%. From morphological studies using a scanning electron microscopy technique a good dispersion of carbon nanotubes in the PP matrix was observed. The rheological studies were performed by a capillary rheometer, and mechanical properties of the nanocomposites were studied using a tensile and flexural tester. Both PP and its nanocomposites showed non-Newtonian behavior. At low shear rates the addition of MWNT content causes an increase in viscosity; however, viscosity is less sensitive to addition of MWNT content at higher shear rates. Flow activation energy for the nanocomposites was calculated using an Arrhenius type equation. From this calculation it was concluded that the temperature sensitivity of nanocomposites was increased by increasing of nanotube content. An increase in tensile and flexural moduli and Izod impact strength was also observed by increasing the MWNT content. From rheological and mechanical tests it was concluded that the mechanical and rheological percolation threshold is at 1.5 wt%.  相似文献   

5.
The synthesis and characterization of polyacrylamide/clay nanocomposites for the development of hydrogel system used in enhanced oil recovery is described. The synthesized nanocomposite copolymer was crosslinked with Chromium (III) acetate to form the hydrogel which exhibited an acceptable gel strength, gelation time and gel stability. The nanocomposite gels prepared with low crosslinker concentration (2000 ppm chromium acetate) showed higher gel strength and required longer gelation time than the conventional polyacrylamide (PAAm) gel; these are desirable properties for the effective placement of gel during enhanced oil recovery operations. The effects of various parameters, such as polymer and crosslinker concentration, on the gelation time and gel strength were evaluated using the bottle testing method. X-ray diffraction (XRD) and field-emission scanning electron microscopy (FESEM) revealed the formation of intercalated and exfoliated clay morphologies. The effects of the clay content on the thermal stability and gel strength of the gel network were also investigated by thermogravimetric analysis (TGA) and rheological measurements (oscillatory time sweep profiles), respectively. Also, in-situ gelation and core flooding experiments revealed that a significant permeability reduction of the sand pack cores could be achieved at reservoir conditions when they were treated with the developed nanocomposite gel formulation. Hence, this nanocomposite gel system with low crosslinker concentration (10,000 ppm of nanocomposite polymer concentration containing 2000 ppm of clay with 2000 ppm chromium acetate crosslinker) may be suitable in water shut-off treatments required for enhanced oil recovery from the oil fields.  相似文献   

6.
A blend/clay nanocomposites of 50/50 (wt%) NR/SBR was prepared via mixing the latex of a 50/50 NR/SBR blend with an aqueous clay dispersion and co‐coagulating the mixture. The structure of the nanocomposite was characterized by transmission electron microscopy (TEM) and X-ray diffraction (XRD). Nanocomposites containing less than 10 phr clay showed a fully exfoliated structure. After increasing the clay content to 10 phr, both nonexfoliated (stacked layers) and exfoliated structures were observed in the nanocomposites. The results of mechanical tests showed that the nanocomposites presented better mechanical properties than clay‐free NR/SBR blend vulcanizate. Furthermore, tensile strength, tensile strain at break, and hardness (shore A) increased with increasing clay content, up to 6 phr, and then remained almost constant.  相似文献   

7.
Abstract

New organic–inorganic nanocomposites based on PVA, SiO2 and SSA were prepared in a single step using a solution casting method, with the aim to improve the thermomechanical properties and ionic conductivity of PVA membranes. The structure, morphology, and properties of these membranes were characterized by Raman spectroscopy, small- and wide-angle X-ray scattering (SAXS/WAXS), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), water uptake (Wu) measurements and ionic conductivity measurements. The SAXS/WAXS analysis showed that the silica deposited in the form of small nanoparticles (~ 10?nm) in the PVA composites and it also revealed an appreciable crystallinity of pristine PVA membrane and PVA/SiO2 membranes (decreasing with increasing silica loading), and an amorphous structure of PVA/SSA and PVA/SSA/SiO2 membranes with high SSA loadings. The thermal and mechanical stability of the nanocomposite membranes increased with the increasing silica loading, and silica also decreased the water uptake of membranes. As expected, the ionic conductivity increased with increasing content of the SSA crosslinker, which is a donor of the hydrophilic sulfonic groups. Some of the PVA/SSA/SiO2 membranes had a good balance between stability in aqueous environment (water uptake), thermomechanical stability and ionic conductivity and could be potential candidates for proton exchange membranes (PEM) in fuel cells.  相似文献   

8.
Composite materials consisting of poly(butylene succinate) (PBS) and montmorillonite (MMT), modified to various extents using trihexyltetradecylphosphonium chloride (THTDP) cations, were prepared using a simple melt intercalation technique. The surfactant contents were varied, i.e. 0.4, 0.6, 0.8, 1.0, and 1.2 times the cation exchange capacity (CEC) of the MMT. The intercalation of the surfactant molecules into MMT layers, confirmed by the increase in interlayer spacing and significant changes in the morphology of the modified MMT, facilitated the dispersion of the clay in the PBS matrix. The properties of the PBS-based composites were changed with increasing surfactant content. The melting and crystallization temperatures increased and the degree of crystallinity (χc) decreased. The storage modulus was significantly enhanced below the glass transition temperature (Tg), and Tg shifted to a higher temperature, with a maximum at a surfactant loading of 0.6 CEC. The mechanical properties, including tensile strength, flexural strength, flexural modulus and impact strength, increased and then decreased with surfactant loading, with the maximum observed also at a surfactant loading of 0.6 CEC. In conclusion, an ideal balance between thermal and mechanical properties can be obtained at a surfactant quantity equivalent to 0.6 times the clay CEC. Moreover, all the composites exhibited obvious improvement in thermal and mechanical properties as compared to those of neat PBS.  相似文献   

9.
In this paper, a series of P(NIPAM-co-AA)/Clay composite hydrogels (abbreviated as NAC gels) with high swelling ratio and excellent mechanical strength were synthesized and characterized by DMA, SEM, and IR. In NAC gels composed of a unique organic P(NIPAM-co-AA)/inorganic (clay) network, the inorganic clay acts as a multifunctional cross-linker in place of an organic cross-linker as used in the conventional chemically cross-linked hydrogels (abbreviated as OR gels). The NAC gels exhibit excellent swelling ratio, and there was no detectable change in properties on altering the concentration of clay, while the swelling ratio tends to decrease slightly when C clay increases up to 25 wt%, which was revealed in swelling measurements. IR spectra show that clay has been intercalated by copolymers. Furthermore, results of DMA reveal that the composite hydrogel has an excellent mechanical strength by using a wide range of clay concentration, while the moduli improve with increasing C clay.  相似文献   

10.
Abstract

In this research chitosan/gelatin/starch films with a 47.5/47.5/5.0 (vol.%) composition were prepared by a solution casting method. To improve the mechanical and rheological properties of the chitosan-based films, two types of chemical crosslinkers, sodium triphosphate (STP) and calcium triphosphate (CTP), were used and the effects of these crosslinkers on the mechanical properties, swelling, water vapor transmission rate (WVTR) and the rheological-mechanical spectroscopy (RMS) of the films were investigated. For each crosslinker, two concentrations (0.05 and 0.1?wt% solutions) were used. The tensile test results showed that the samples with 0.05?wt% of STP or 0.1?wt% of CTP, had the best performance in enhancing the tensile strength and modulus of the films. The swelling tests indicated that 0.05?wt% of STP had the lowest swelling, and the performance with 0.1?wt% of CTP was also good. The results of the WVTR tests revealed that 0.05?wt% of STP and 0.1?wt% of CTP had the least and the most WVTR, respectively. Also, antibacterial tests were evaluated for the films based on an inhibition zone technique, and the results showed that the films containing the STP crosslinker has the best antibacterial activity. The RMS results indicated that the rheological properties of the films were enhanced by incorporating the crosslinkers, especially 0.1% concentration of CTP, into the film formulations.  相似文献   

11.
The effects of organically modified clay (OMC) incorporation on the microstructure and the electrical and mechanical properties of polypropylene (PP)/polyethylene (PE) blends filled with carbon nanotubes (CNT) were investigated. All blends were prepared by melt mixing in a batch mixer. The microstructures were characterized by scanning electron microscopy. In the OMC:CNT filled blends, the CNT were found to selectively localize within the PE phase, while the clay particles were observed in the PP phase. The electrical resistivity of OMC:CNT filled blends did not show any significant change as a result of the clay addition since it was localized in the CNT-free phase. On the other hand, the addition of clay degraded the blends' mechanical properties due to the poor adhesion between the OMC and the PP matrix.  相似文献   

12.
The surface carbon nanotubes (CNTs) were modified to generate functional reactors by using the sonicication method to distribute CNTs evenly among epoxy resin, which was prepared into nano-prepreg with carbon fibers. Additionally, based on various proportions of modified and unmodified CNTs, the mechanical properties and conductivities of the composite, as well as, the characteristics of material subjected to various temperature conditions were investigated. Experimental results indicate that increasing CNT content enhances the mechanical strength and electrical properties. At various temperatures, the mechanical strength drops with increase in temperature because different expansion coefficients differ between fiber and epoxy resin. Finally, the failure surface of nanocomposite was examined using scanning electron microscopy (SEM). Finally we provide a discussion of the failure mechanism of the material.  相似文献   

13.
Acrylonitrile‐butadiene‐styrene (ABS)/organically modified montmorillonite nanocomposites were prepared by melt blending in an internal mixer, and their morphology, rheological behaviors and mechanical properties were characterized using X‐ray diffraction (XRD), capillary rheometer and tensile, flexural and impact tests. X‐ray diffraction studies revealed the presence of intercalated structure for the prepared nanocomposites and good dispersion of clay layers at low levels of its loading. From the rheological investigations it was observed that the prepared nanocomposites and their pristine counterpart have shear‐thinning behavior, obeying the power law equation. At low shear rates, the steady shear viscosity and shear stress of the nanocomposites increase with increasing of nanoclay content. However, at high shear rates they behave similar to pure ABS. It was shown that the flow activation energy (E) values increase with increasing of nanoclay content. Mechanical tests showed that the flexural moduli of the nanocomposites increase with increase of nanoclay loading, but the flexural strength and the tensile and impact properties decrease with increase of nanoclay content.  相似文献   

14.
《Composite Interfaces》2013,20(4-6):337-346
One approach to improve the impact strength of acrylonitrile–butadiene–styrene (ABS)/clay nanocomposites is to increase rubber content. To investigate the effect of the rubber content of ABS on the mechanical properties of the ABS/clay nanocomposites, other parameters were fixed and ABS/clay nanocomposites containing various rubber contents were prepared in this study. Also the effect of the UV stabilizer on the mechanical properties of ABS/clay nanocomposite was studied. For addition of 3 wt% clay, ABS nanocomposite with 35 wt% content of rubber displayed the highest reinforcement ratio for tensile properties and impact strength.  相似文献   

15.
Hydrogel scaffolds based on poly(vinyl alcohol) (PVA) collagen films were prepared by a chemical cross-linking method. The effects of the contents of PVA and cross-linker on compressive strength and swelling ratio were studied, and the effect of the pH value of the immersion medium on the swelling ratio was also investigated. The results showed that the introduction of PVA improved the compressive strength of PVA/collagen hydrogel, and the swelling ratio of the hydrogel scaffold increased with increasing PVA content in the blends. With increasing cross-linker content, the swelling ratio decreased; however, the compressive strength increased. The swelling ratio of PVA/collagen scaffold increased when pH was decreased. In conclusion, swelling ratio and compressive strength in PVA/collagen blends can be controlled by variation of their contents, cross-linking agent content, and pH value.  相似文献   

16.
Amorphous carbon nitride thin films were deposited by pulsed laser deposition combined with a nitrogen rf radical beam source. A structural characterization of the deposited films was performed using X-ray photoelectron and Raman-scattering spectroscopy. The Raman spectra showed that the dominant hybridization state of carbon atoms in the deposited film is sp2. N 1s electron spectra were deconvoluted into three components, N bonded to pyridine-like N and/or N-sp3C (N1), substitutional N in graphite (N2), and N-O and/or N-N (N3). The proportion of N1 increased with increasing N/C atomic ratio in the film. The electrical conductivity at room temperature decreased and the Tauc optical band gap increased with increasing N/C atomic ratio. The temperature dependence of the electrical conductivity indicated that electronic conduction occurred by variable range hopping between electron localized states. The decrease in electrical conductivity with increasing N/C atomic ratio was caused by a strong electron localization due to the increased proportion of N1. PACS 81.05.Uw; 81-15.Fg; 73.61.Jc  相似文献   

17.
The electrical conductivity was investigated for multi-walled carbon nanotubes (MWNTs) dissolved in chloroform and toluene, respectively. The electrical conductivity remarkably increased with increase in the content of MWNTs, which is in accordance with Archie's equation . Furthermore, a hypothesis of the electronic transport process was proposed to explain the difference between the solution and the solid compound. In addition, the temperature dependence of the electrical conductivity shows that log σ vs. 1/T exist in a good linear relationship. The activation energy of the electrical conductivity decreased with increase in concentration and an inflexion was observed at 60 °C in MWNT/toluene solution.  相似文献   

18.
An attempt has been made to prepare and characterise ammonium thiocyanate (NH4SCN) salt and a multiwall carbon nanotube (MWNT)-doped polyvinyl alcohol-based nanofibre mats using an electrospinning process. The X-ray diffraction result shows an improvement in the amorphous nature of composite electrolyte fibre mats with increasing concentrations of the MWNT filler. The DSC behaviour of these nanofibre mat exhibits better thermal response upon dispersal of the filler. Composite electrolyte nanofibre mat doped with 6 wt% MWNT shows optimum conductivity, viz., 5.8?×?10?4 Scm?1. The temperature dependence of the bulk electrical conductivity displays a combination of Arrhenius and Vogel–Tammam–Fulcher nature. Dielectric loss studies have also been used to understand the conduction process in the system. Jonscher power law seems to be obeyed during ac conductivity measurements of the fibre mats.  相似文献   

19.
Multiwalled carbon nanotubes (MWCNTs) are considered to be the ideal reinforcing agent for high-strength polymer composites, because of their fantastic mechanical strength, high electrical and thermal conductivity and high aspect ratio. Polymer/MWCNTs composites are easily molded, and the resulting shaped plastic articles have a perfect surface appearance compared with polymer composites made using usual carbon or glass fibers. Good interfacial adhesion between the MWCNTs and the polymer matrix is essential for efficient load transfer in the composite. The ultrahigh strength polymer composites demand the uniform dispersion of the MWCNTs in the polymer matrix without their aggregation and the good miscibility between MWCNT and polymer matrix. This approach can also be applied to biodegradable synthetic aliphatic polyesters such as poly(l-lactide) (PLLA), which has received a great deal of attention due to environmental concerns. In this study, PLLA was melt-compounded with MWCNTs. A high degree of dispersion of the MWCNTs in the composites was obtained by grafting PLLA onto the MWCNTs (PLLA-g-MWCNTs). After oxidizing the MWCNTs by treating them with strong acids, they were reacted with l-lactide to produce the PLLA-g-MWCNTs. The mechanical properties of the PLLA/PLLA-g-MWCNT composite were higher than those of the PLLA/MWCNT composite. The electrical conductivity of the composites was determined by measuring the volume resistivity, which is a value of the resistance expressed in a unit volume by two-probe method. The thermal diffusivity and heat capacity of composites was measured by laser flash method, and the effects of modification of the MWCNT in PLLA matrix are discussed.  相似文献   

20.
黄平  游理  梁星  张继业  骆军 《物理学报》2019,68(7):77201-077201
层状氧硫族化合物由于其本征的低晶格热导率和可观的热电性能吸引了广泛关注,其中以BiCuSeO化合物的热电性能最为优异.但是,其同晶型化合物BiCuTeO,由于带隙较小且存在大量本征Cu空位,导致载流子浓度较高,热电性能较差,从而研究较少.针对BiCuTeO存在的上述问题,本文利用Se替代部分Te,以期能够展宽带隙并减少Cu空位,提高其热电性能.采用固相反应结合快速热压烧结制备了BiCuTe_(1-x)Se_xO(x=0, 0.1, 0.2, 0.3和0.4)块体热电材料,并系统地研究了该体系的电热输运性能.研究结果表明,利用Se替代Te,可以使BiCuTeO导电层化学键强度增加、带隙增大、载流子有效质量增加以及载流子散射增强,从而导致载流子浓度和迁移率同时降低,进而电导率随着Se含量增加而剧烈降低, Seebeck系数则显著增大.由于综合电输运性能恶化,功率因子随着Se含量增加而减小,导致热电优值zT随着Se含量增加而降低.最终,Se含量为x=0.1的样品,在室温和723 K时的zT值分别达到约0.3和0.7,仍然在较宽温区内保持较高的zT值.由于Se替代Te改变了BiCuTeO的能带结构,通过载流子浓度优化,有望进一步提高其热电性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号