首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Quantifying viable bacteria in liquids is important in environmental, food processing, manufacturing, and medical applications. Since vegetative bacteria generate heat as a result of biochemical reactions associated with cellular functions, thermal sensing techniques, including infrared thermography (IRT), have been used to detect viable cells in biologic samples. We developed a novel method that extends the dynamic range and improves the sensitivity of bacterial quantification by IRT. The approach uses IRT video, thermodynamics laws, and heat transfer mechanisms to directly measure, in real-time, the amount of energy lost as heat from the surface of a liquid sample containing bacteria when the specimen cools to a lower temperature over 2 min. We show that the Energy Content (EC) of liquid media containing as few as 120 colony-forming units (CFU) of Escherichia coli per ml was significantly higher than that of sterile media (P < 0.0001), and that EC and viable counts were strongly positively correlated (r = 0.986) over a range of 120 to approximately 5 × 108 CFU/ml. Our IRT approach is a unique non-contact method that provides real-time bacterial enumeration over a wide dynamic range without the need for sample concentration, modification, or destruction. The approach could be adapted to quantify other living cells in a liquid milieu and has the potential for automation and high throughput.  相似文献   

2.
The magnetocaloric properties of melt-spun Gd-B alloys were examined with the aim to explore their potential application as magnetic refrigerants near room temperature. A series of Gd100−xBx (x=0, 5, 10, 15, and 20 at%) alloys were prepared by melt spinning. With the decrease in Gd/B ratio, Curie temperature (TC) remains constant at ∼293 K, and saturation magnetization, at 275 K, decreases from ∼100 to ∼78 emu/g. Negligible magnetic hysteresis was observed in these alloys. The peak value of magnetic entropy change, (−ΔSM)max, decreased from ∼9.9 J/kg K (0-5 T) and ∼5.5 J/kg K (0-2 T) for melt-spun Gd to ∼7.7 J/kg K (0-5 T) and ∼4.0 J/kg K (0-2 T), respectively for melt-spun Gd85B15 and Gd80B20 alloys. Similarly, the refrigeration capacity (q) decreased monotonously from ∼430 J/kg (0-5 T) for melt-spun Gd to ∼330 J/kg (0-5 T) for melt-spun Gd80B20 alloy. The near room temperature magnetocaloric properties of melt-spun Gd100−xBx (0≤x≤20) alloys were found to be comparable to few first-order transition based magnetic refrigerants.  相似文献   

3.
BiFeO3/Zn1−xMnxO (x = 0-0.08) bilayered thin films were deposited on the SrRuO3/Pt/TiO2/SiO2/Si(1 0 0) substrates by radio frequency sputtering. A highly (1 1 0) orientation was induced for BiFeO3/Zn1−xMnxO. BiFeO3/Zn1−xMnxO thin films demonstrate diode-like and resistive hysteresis behavior. A remanent polarization in the range of 2Pr ∼ 121.0-130.6 μC/cm2 was measured for BiFeO3/Zn1−xMnxO. BiFeO3/Zn1−xMnxO (x = 0.04) bilayer exhibits a highest Ms value of 15.2 emu/cm3, owing to the presence of the magnetic Zn0.96Mn0.04O layer with an enhanced Ms value.  相似文献   

4.
Layered misfit cobaltite Bi2Ca2.4Co2Oy has been synthesized by a sol-gel method. This compound exhibits large thermoelectric (TE) power (S300 K∼170 μV K−1), low resistivity (ρ300 K∼42 mΩ cm) and relatively small thermal conductivity (κ300 K∼2.8 W K−1 m−1) at room temperature. Furthermore, the resistivity of this compound displays a metallic behavior above T?∼150 K with a semiconducting behavior below this temperature. This abnormal behavior in resistivity is analogous to those observed in Sr and Ba based misfit cobaltites. The observed features of the TE have been discussed based on the narrow band model.  相似文献   

5.
The composite which contains Ag+ and nanosized hydroxyapatite with TiO2 was deposited onto titanium by dipping method. The morphology, chemical components and structures of the thin film were characterized by XRD, scanning electronic microscope (SEM) and energy dispersive X-ray analysis (EDX). Staphylococcus aureus and Escherichia coli were utilized to test the antibacterial effect. XRD results demonstrated that the films have characteristic diffraction peaks of pure HA. EDX results showed that the deposited films consisted of Ca, P, Ti, O and Ag, all of which distribute uniformly. With regard to the antibacterial effect, 98% of S. aureus and more than 99% of E. coli were killed after 24 h incubation and pictures of SEM showed obviously fewer cells on the surface with coating.  相似文献   

6.
We propose a quasi-three-dimensional frequency-domain model to investigate the lasing modes of an InGaAsP/InP quantum-dot microdisk laser. The model requires a complex susceptibility to solve the electromagnetic fields of the microdisk laser. We use the model to investigate the size limitations of the quantum-dot laser by evaluating its performance through the cavity quality-factor (Q-factor), from which the linewidth can be inferred. We find that higher order modes with high Q-factors (∼ 2.4 × 104) and consequently narrow linewidths (∼ 65 pm) propagating in the 1.5 μm wavelength region can be sustained in a microdisk laser with a radius as small as 1.6 μm and a thickness of 200 nm. Our model can be used to study other types of microdisks provided that the susceptibility of the medium is known.  相似文献   

7.
We have investigated the structural and electrical transport properties of Nb-doped TiO2 films deposited on (1 0 0) LaAlO3 substrates by rf magnetron sputtering at temperatures ranging from 873 K to 1073 K. Films deposited below 998 K are anatase, and mixed phases between anatase and rutile exist in the film grown at higher temperatures. We find that films deposited at low temperatures exhibit semiconductor behavior, while metallic conductivity is observed in the most conducting film deposited at 998 K. For this sample, compared to electron-phonon scattering mechanism, electron-phonon-impurity interference effect plays an important role in its electron transport process. Moreover, the temperature coefficient of the resistivity for the film deposited at 1073 K is negative from 2 K to 300 K. The temperature dependence of resistivity for the film is described by ∼exp(b/T)1/2 at temperatures from 80 K down to 30 K, and by the fluctuation induced tunneling model from 80 K to 300 K.  相似文献   

8.
We report the iron isotope effect on a transition temperature (Tc) in an optimally-doped (Ba,K)Fe2As2 (Tc = 38 K) and SmFeAsO1−y (Tc = 54 K) superconductors. In order to obtain the reliable isotope shift in Tc, twin samples with different iron isotope mass are synthesized in the same conditions (simultaneously) under high-pressure. We have found that (Ba,K)Fe2As2 shows an inverse iron isotope effect αFe = −0.18 ± 0.03 while SmFeAsO1−y shows a small iron isotope effect αFe = −0.02 ± 0.01, where the isotope exponent α is defined by Tc  Mα (M is the isotopic mass). The results show that αFe changes in the iron-based superconductors depending on the system. The distinct iron isotope effects imply the exotic coupling mechanism in the iron-based superconductors.  相似文献   

9.
Important progress has been made in the passivation of Ge/gate dielectric interfaces. One important approach is by thermally oxidized GeO2 interface and ALD high-k layers, with an interface state density Dit ∼ 2 × 1011 cm−2 eV−1. Another approach is with an epi-Si/SiO2 interface, resulting in similar Dit. Hysteresis and Vth shift, however, are still not optimal. Extensive material characterization and theoretical insights help us understanding the root cause of these remaining issues and show the way to improved interface control.  相似文献   

10.
Cathodoluminescent (CL) spectra of Li-doped Gd2−xYxO3:Eu3+ solid-solution (0.0?x?0.8) were investigated at low voltages (300 V-1 kV). The CL intensity is maximum for the composition of x=0.2 and gradually reduces with increasing the amount of substituted Y content. In particular, small (∼100 nm) particles of Li-doped Gd1.8Y0.2O3:Eu3+ are obtained by firing the citrate precursors at only 650°C for 18 h. Relative red-emission intensity at 300 V of this phosphor is close to 180% in comparison with that of commercial red phosphor Y2O3:Eu3+. An increase of firing temperature to 900°C results in 400-600 nm sized spherical particles. At low voltages (300-800 V), the CL emission of 100 nm sized particles is much stronger than that of 400-600 nm sized ones. In contrast, the larger particles exhibit the higher CL emission intensity at high voltages (1-10 kV). Taking into consideration small spherical morphology and effective CL emission, Li-doped Gd1.8Y0.2O3:Eu3+ appears to be an efficient phosphor material for low voltage field emission display.  相似文献   

11.
La-doped HfO2 gate dielectric thin films have been deposited on Si substrates using La(acac)3 and Hf(acac)4 (acac = 2,4-pentanedionate) mixing sources by low-pressure metal-organic chemical vapor deposition (MOCVD). The structure, thermal stability, and electrical properties of La-doped HfO2 films have been investigated. Inductive coupled plasma analyses confirm that the La content ranging from 1 to 5 mol% is involved in the films. The films show smaller roughness of ∼0.5 nm and improved thermal stability up to 750 °C. The La-doped HfO2 films on Pt-coated Si and fused quartz substrates have an intrinsic dielectric constant of ∼28 at 1 MHz and a band gap of 5.6 eV, respectively. X-ray photoelectron spectroscopy analyses reveal that the interfacial layer is Hf-based silicate. The reliable value of equivalent oxide thickness (EOT) around 1.2 nm has been obtained, but with a large leakage current density of 3 A/cm2 at Vg = 1V + Vfb. MOCVD-derived La-doped HfO2 is demonstrated to be a potential high-k gate dielectric film for next generation metal oxide semiconductor field effect transistor applications.  相似文献   

12.
We report (FePt)Ag-C granular thin films for potential applications to ultrahigh density perpendicular recording media, that were processed by co-sputtering FePt, Ag, and C targets on MgO underlayer deposited on thermally oxidized Si substrates. (FePt)1−xAgx-yvol%C (0<x<0.2, 0<y<50) films were fabricated on oxidized silicon substrates with a 10 nm MgO interlayer at 450oC. We found that the Ag additions improved the L10 ordering and the granular structure of the FePt-C films with the perpendicular coercivity ranging from 26 to 37 kOe for the particle size of 5-8 nm. The (FePt)0.9Ag0.1-50vol%C film showed the optimal magnetic properties as well as an appropriate granular morphology for recording media, i.e., average grain size of Dav=6.1 nm with the standard deviation of 1.8 nm.  相似文献   

13.
Thermo-optical parameters of CdSe/ZnS core-shell nanoparticles suspended in toluene were measured using a thermal lens (TL) technique. TL transient measurements were performed using the mode-mismatched dual-beam (excitation and probe) configuration. A He-Ne laser at λp = 632.8 nm was used as the probe beam and an Ar+ laser (at λe = 514.5 nm) was used as the excitation beam for studies as a function of both core size and concentration of CdSe/ZnS nanocrystals. The fraction thermal load (φ) and radiative quantum efficiencies (η) of the CdSe/ZnS were determined. Dependence on core size (∼2-5 nm) and concentration (∼0.01-0.62 mg/ml) was observed for both φ and η parameters.  相似文献   

14.
Cobalt-substituted ferrite nanoparticles were synthesized with a narrow size distribution using reverse micelles formed in the system water/AOT/isooctane. Fe:Co ratios of 3:1, 4:1, and 5:1 were used in the synthesis, obtaining cobalt-substituted ferrites (CoxFe3−xO4) and some indication of γ-Fe3O4 when 4:1 and 5:1 Fe:Co ratios were used. Inductively coupled plasma mass spectroscopy (ICP-MS) verified the presence of cobalt in all samples. Fourier transform infrared (FTIR) showed bands at ∼560 and ∼400 cm−1, characteristic of the metal–oxygen bond in ferrites. Transmission electron microscopy showed that the number median diameter of the particles was ∼3 nm with a geometric deviation of ∼0.2. X-ray diffraction (XRD) confirmed the inverse spinel structure typical of ferrites with a lattice parameter of a=8.388 Å for Co0.61Fe0.39O4, which is near that of CoFe2O4 (a=8.394 Å). Magnetic properties were determined using a superconducting quantum interference device (SQUID). Coercivities higher than 8 kOe were observed at 5 K, whereas at 300 K the particles showed superparamagnetic behavior. The anisotropy constant was determined based on the Debye model for a magnetic dipole in an oscillating field and an expression relating χ′ and the temperature of the in-phase susceptibility peak. Anisotropy constant values in the order of ∼106 erg/cm3 were determined using the Debye model, whereas anisotropy constants in the order of ∼107 erg/cm3 were calculated assuming Ωτ=1 at the temperature peak of the in-phase component of the susceptibility curve as commonly done in the literature. Our analysis demonstrates that the assumption Ωτ=1 at the temperature peak of χ′ is rigorously incorrect.  相似文献   

15.
Metal-insulator-metal (MIM) capacitors were fabricated using ZrO2 films and the effects of structural and native defects of the ZrO2 films on the electrical and dielectric properties were investigated. For preparing ZrO2 films, Zr films were deposited on Pt/Si substrates by ion beam deposition (IBD) system with/without substrate bias voltages and oxidized at 200 °C for 60 min under 0.1 MPa O2 atmosphere with/without UV light irradiation (λ = 193 nm, Deep UV lamp). The ZrO2(∼12 nm) films on Pt(∼100 nm)/Si were characterized by X-ray diffraction pattern (XRD), field emission scanning electron microscopy (FE-SEM) and high-resolution transmission electron microscopy (HRTEM), capacitance-voltage (C-V) and current-voltage (I-V) measurements were carried out on MIM structures. ZrO2 films, fabricated by oxidizing the Zr film deposited with substrate bias voltage under UV light irradiation, show the highest capacitance (784 pF) and the lowest leakage current density. The active oxygen species formed by UV irradiation are considered to play an important role in the reduction of the leakage current density, because they can reduce the density of oxygen vacancies.  相似文献   

16.
The (Zr0.8Sn0.2)TiO4 material (ZST), has been prepared by solid state reaction and characterized. The samples were sintered in the temperature range of 1260-1320 °C for 2 h. The effects of sintering parameters like sintering temperature (Ts) and MgO addition (0.2 wt.%) on structural and dielectric properties were investigated. Bulk density increases from 4900 to 5050 kg/m3 with the increase of sintering temperature. The effect of MgO addition is to lower the sintering temperature in order to obtain well sintered samples with high value of bulk density. The material exhibits a dielectric constant ?r ∼ 37 and high values of the Q × f product, greater than 45,000, at microwave frequencies. The dielectric properties make the ZST material very attractive for microwave applications such as dielectric resonators, filters, dielectric antennas, substrates for hybrid microwave integrated circuits, etc.  相似文献   

17.
The structural and magnetic properties of ∼12 nm thick FePt thin films grown on Si substrates annealed using a 1064 nm wavelength laser with a 10 ms pulse have been examined. The A1 to L10 ordering phase transformation was confirmed by electron and X-ray diffraction. An order parameter near 50% and a maximum coercivity of 12 kOe were obtained with laser energy densities of 25-32 J/cm2. Grain growth, quantified by dark field transmission electron microscopy, occurred during chemical ordering at the laser pulse widths studied.  相似文献   

18.
The pure rotational spectrum of TiS in its X3Δr ground state has been measured using millimeter-wave direct-absorption techniques in the frequency range of 313-425 GHz. This free radical was created by the reaction of titanium vapor, produced in a high-temperature Broida-type oven, with H2S. Eight to ten rotational transitions were recorded for the main titanium isotopologue, 48TiS, in the v = 0 and v = 1 levels, as well as for the v = 0 state of 46TiS, observed in natural abundance (48Ti:46Ti = 74:8). All three Ω components were observed in almost every recorded transition, with no evidence for lambda-doubling. The data were fit with a Hund’s case(a) Hamiltonian, and rotational, spin-orbit, and spin-spin constants were determined, as well as equilibrium parameters for 48TiS. Relatively few fine structure parameters were needed for the analysis of TiS (A, AD, and λ), unlike other 3d metal species. The rotational pattern of the three fine structure components suggests the presence of a nearby excited 1Δ state, lying ∼3000 cm−1 higher in energy. From the equilibrium parameters, the dissociation energy for TiS was estimated to be ∼5.1 eV, in reasonable agreement with past thermochemical data.  相似文献   

19.
20.
Crystallization in the melt-quenched (MQ) and mechanically milled (MM) superionic systems has been thoroughly investigated using differential scanning calorimetry, X-ray diffraction and electrical conductivity measurements. It is observed that the two systems obey different crystallization processes. The conventionally melt-quenched samples exhibit only one crystallization peak near 112 °C, whereas, the mechanochemically synthesized samples show two well-separated crystallization peaks at Tcl∼75-97 °C and Tc2∼132±2 °C. The higher value of electrical conductivity in the mechanochemically synthesized samples (∼10−2 Ω−1 cm−1 at 300 K) than the melt-quenched samples is attributed to the higher value of disorder (entropy) in the former.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号