首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
This work provides a semi-analytic approximation method for decoupled forward-backward SDEs (FBSDEs) with jumps. In particular, we construct an asymptotic expansion method for FBSDEs driven by the random Poisson measures with σ-finite compensators as well as the standard Brownian motions around the small-variance limit of the forward SDE. We provide a semi-analytic solution technique as well as its error estimate for which we only need to solve essentially a system of linear ODEs. In the case of a finite jump measure with a bounded intensity, the method can also handle state-dependent and hence non-Poissonian jumps, which are quite relevant for many practical applications.  相似文献   

2.
We discuss nonparametric estimation of trend coefficient in models governed by a stochastic differential equation driven by a mixed fractional Brownian motion with small noise.  相似文献   

3.
We deal with the least squares estimator for the drift parameters of an Ornstein-Uhlenbeck process with periodic mean function driven by fractional Lévy process. For this estimator, we obtain consistency and the asymptotic distribution. Compared with fractional Ornstein-Uhlenbeck and Ornstein-Uhlenbeck driven by Lévy process, they can be regarded both as a Lévy generalization of fractional Brownian motion and a fractional generaliza- tion of Lévy process.  相似文献   

4.
We consider the fractional analogue of the Ornstein–Uhlenbeck process, that is, the solution of a one-dimensional homogeneous linear stochastic differential equation driven by a fractional Brownian motion in place of the usual Brownian motion. The statistical problem of estimation of the drift and variance parameters is investigated on the basis of a semimartingale which generates the same filtration as the observed process. The asymptotic behaviour of the maximum likelihood estimator of the drift parameter is analyzed. Strong consistency is proved and explicit formulas for the asymptotic bias and mean square error are derived. Preparing for the analysis, a change of probability method is developed to compute the Laplace transform of a quadratic functional of some auxiliary process. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

5.
We consider an ordinary differential equation depending on a small parameter and with a long-range random coefficient. We establish that the solution of this ordinary differential equation converges to the solution of a stochastic differential equation driven by a fractional Brownian motion. The index of the fractional Brownian motion depends on the asymptotic behavior of the covariance function of the random coefficient. The proof of the convergence uses the T. Lyons theory of “rough paths”. To cite this article: R. Marty, C. R. Acad. Sci. Paris, Ser. I 338 (2004).  相似文献   

6.
We investigate the optimal filtering problem in the simplest Gaussian linear system driven by fractional Brownian motions. At first we extend to this setting the Kalman–Bucy filtering equations which are well-known in the specific case of usual Brownian motions. Closed form Volterra type integral equations are derived both for the mean of the optimal filter and the variance of the filtering error. Then the asymptotic stability of the filter is analyzed. It is shown that the variance of the filtering error converges to a finite limit as the observation time tends to infinity. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

7.
Existence of a weak solution to the n-dimensional system of stochastic differential equations driven by a fractional Brownian motion with the Hurst parameter H ∈ (0, 1) \ {1/2} is shown for a time-dependent but state-independent diffusion and a drift that may by split into a regular part and a singular one which, however, satisfies the hypotheses of the Girsanov Theorem. In particular, a stochastic nonlinear oscillator driven by a fractional noise is considered.  相似文献   

8.
We modify the Hu-Øksendal and Elliot-van der Hoek approach to arbitrage-free financial markets driven by a fractional Brownian motion that is defined on a white noise space. We deduce and solve a Black–Scholes fractional equation for constant volatility and outline the corresponding equation with stochastic volatility. As an auxiliary result, we produce some simple conditions implying the existence of the Wick integral w.r.t. fractional noise.  相似文献   

9.
This paper proposes a minimum contrast methodology to estimate the drift parameter for the Ornstein-Uhlenbeck process driven by fractional Brownian motion of Hurst index, which is greater than one half. Both the strong consistency and the asymptotic normality of this minimum contrast estimator are studied based on the Laplace transform. The numerical simulation results confirm the theoretical analysis and show that the minimum contrast technique is effective and efficient.  相似文献   

10.
《随机分析与应用》2013,31(6):1577-1607
Abstract

Linear and semilinear stochastic evolution equations with additive noise, where the forcing term is an infinite dimensional fractional Brownian motion are studied. Under usual dissipativity conditions the equations are shown to define random dynamical systems which have unique, exponentially attracting fixed points. The results are applied to stochastic parabolic PDE's. They are also applicable to standard finite-dimensional dissipative stochastic equation driven by fractional Brownian motion.  相似文献   

11.
《随机分析与应用》2012,30(1):62-75
Abstract

We investigate the asymptotic properties of the maximum likelihood estimator of the drift parameter in a cusp-type signal driven by a fractional Brownian motion.  相似文献   

12.
In this article we introduce cylindrical fractional Brownian motions in Banach spaces and develop the related stochastic integration theory. Here a cylindrical fractional Brownian motion is understood in the classical framework of cylindrical random variables and cylindrical measures. The developed stochastic integral for deterministic operator valued integrands is based on a series representation of the cylindrical fractional Brownian motion, which is analogous to the Karhunen–Loève expansion for genuine stochastic processes. In the last part we apply our results to study the abstract stochastic Cauchy problem in a Banach space driven by cylindrical fractional Brownian motion.  相似文献   

13.
Abstract

We investigate the asymptotic properties of instrumental variable estimators of the drift parameter for stochastic processes satisfying linear stochastic differential equations driven by fractional Brownian motion.  相似文献   

14.
The contact problem for a thin elastic rigid plate described by the elasticity equations and a viscoelastic layer is solved. The ratio of the thicknesses of the plate and the layer is a small parameter, while the ratio of the Young’s moduli of the layer and the plate is proportional to the cube of this parameter. The asymptotic expansion of the solution is constructed. A theorem on the estimate of the error of asymptotic approximation is formulated. Such problem appears in geophysics, in modeling of the Earth crust–magma interaction.  相似文献   

15.
We estimate the drift parameter in a simple linear model driven by fractional Brownian motion. We propose maximum likelihood estimators (MLE) for the drift parameter construct by using a random walk approximation of the fractional Brownian motion.  相似文献   

16.
In this article, a class of second-order differential equations on [0,1], driven by a γ-Hölder continuous function for any value of γ∈(0,1) and with multiplicative noise, is considered. We first show how to solve this equation in a pathwise manner, thanks to Young integration techniques. We then study the differentiability of the solution with respect to the driving process and consider the case where the equation is driven by a fractional Brownian motion, with two aims in mind: show that the solution that we have produced coincides with the one which would be obtained with Malliavin calculus tools, and prove that the law of the solution is absolutely continuous with respect to the Lebesgue measure.  相似文献   

17.
We study the local asymptotic normality and estimation for drift parameter obtained through Kalman–Bucy filter for linear systems driven by fractional Brownian motions.  相似文献   

18.
We investigate the small ball problem for d-dimensional fractional Brownian sheets by functional analytic methods. For this reason we show that integration operators of Riemann–Liouville and Weyl type are very close in the sense of their approximation properties, i.e., the Kolmogorov and entropy numbers of their difference tend to zero exponentially. This allows us to carry over properties of the Weyl operator to the Riemann–Liouville one, leading to sharp small ball estimates for some fractional Brownian sheets. In particular, we extend Talagrand's estimate for the 2-dimensional Brownian sheet to the fractional case. When passing from dimension 1 to dimension d2, we use a quite general estimate for the Kolmogorov numbers of the tensor products of linear operators.  相似文献   

19.
Abstract

Stochastic delay differential equations with wideband noise perturbations is considered. First it is shown that the perturbed system converges weakly to a stochastic delay differential equation driven by a Brownian motion. Stability and asymptotic properties of stochastic delay differential equations with a small parameter are developed. It is shown that the properties such as stability, recurrence, etc., of the limit system with time lag is preserved for the solution x ?(·) of the underlying delay equation for ? > 0 small enough. Perturbed Liapunov function method is used in the analysis.  相似文献   

20.
We investigate the asymptotic properties of instrumental variable estimators of the drift parameter for stochastic processes satisfying linear stochastic differential equations driven by mixed fractional Brownian motion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号