首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 651 毫秒
1.
Tetrameric [{RZn(NHNMe2)}4] (R = Me, Et), the first organometallic zinc hydrazides to be described, have been prepared by alkane elimination from dialkylzinc solutions and N,N-dimethylhydrazine. They were characterised by 1H and 13C NMR and IR spectroscopy, mass spectrometry, elemental analysis and X-ray crystallography. The compounds form asymmetric aggregates containing the novel Zn4N8 core; tetrahedra of Zn atoms bear the alkyl groups at Zn, with the triangular faces bridged by NHNMe2 substituents. The NH groups are connected to two Zn atoms, and the NMe2 groups to one. Hydrolysis of the compounds with water gives [(RZn)4(OH)(NHNMe2)3] as products, which also were characterised as described above. Higher yields of these hydroxo clusters were achieved in one-pot syntheses by reaction of dialkylzinc solutions with mixtures of N,N-dimethylhydrazine and water. They contain Zn4N6O cages, in which one hydroxide in the tetrameric hydrazides described above replaces one NHNMe2 group. Similar products can be prepared with alkoxy instead of hydroxy groups, in analogous one-pot syntheses with alcohols. Alcoholysis of [EtZn(NHNMe2)]4 with methanol or ethanol gave zinc trishydrazide monoalkoxides, [(EtZn)4(OR)(NHNMe2)3] (R = Me, Et), which have constitutions analogous to the monohydroxides. The organozinc bishydrazide bisalkoxides [(MeZn)4(NHNMe2)2(OEt)2] and [(EtZn)4(NHNMe2)2(OEt)2] were obtained in one-pot reactions from dialkylzinc solutions with mixtures of the hydrazine and alcohol, and their crystal structures, confirmed by spectroscopic methods in solution, show an unsymmetrical aggregation with the novel Zn4N4O2 cage structure.  相似文献   

2.
The zinc hydrazide complexes [EtZn(N(SiMe(3))NMe(2))](2), [EtZn(N(Me)NMe(2))](4), and Zn(3)Et(4)(N(Et)NMe(2))(2) were synthesized by allowing excess hydrazine, HN(R)NMe(2), to react with diethyl zinc. The product of the reaction between ZnEt(2) and HN(i-Pr)NMe(2)ortho-metalated 4-(dimethylamino)pyridine (DMAP) at room temperature, producing the complex Zn[(NC(5)H(3)-p-NMe(2))ZnEt(N(i-Pr)NMe(2))](2). At elevated temperatures, Zn(3)Et(4)(N(Et)NMe(2))(2) also ortho-metalated DMAP, but [EtZn(N(Me)NMe(2))](4) did not. Single-crystal X-ray diffraction studies revealed that the hydrazide ligands in [EtZn(N(SiMe(3))NMe(2))](2) act as bridging mono-hapto amide ligands, and in Zn(3)Et(4)(N(Et)NMe(2))(2) and Zn[(NC(5)H(3)-p-NMe(2))ZnEt(N(i-Pr)NMe(2))](2) the hydrazide ligands are di-hapto.  相似文献   

3.
Several new dizinc complexes that are supported by dianionic bis(amidoamine) ligands are reported. Reaction of N,N'-bis(2-dimethylaminoethyl)dibenzofuran-4,6-diamine ((Me)LH(2)) with 2 equiv of EtZn(O(i)Pr) forms the dizinc bis(alkoxide) (Me)LZn2(O(i)Pr)2 (1), which was isolated in 76% yield. Similarly, (Me)LH2 reacts cleanly with EtZn(OPh) and EtZn(OCHPh2) to form (Me)LZn2(OPh)2 (2) and (Me)LZn2(OCHPh2)2 (3), respectively. The solid-state structures of 1 and 2 feature puckered [Zn2(mu-OR)2]2+ cores, with short intermetal separations (2.81-2.88 Angstroms). Overall, the molecules have approximate (noncrystallographic) C2v symmetry. The use of the more-hindered (i)Pr-substituted ligand N,N'-bis(2-diisopropylaminoethyl)dibenzofuran-4,6-diamine (i(Pr)LH2) to prepare zinc alkoxides gave similar results. Thus, reaction of i(Pr)LH2 with 2 equiv of EtZn(OPh), EtZn(OMe), EtZn(OCHPh2), and EtZn(OCH2Ph) forms i(Pr)LZn2(OPh)2 (4), i(Pr)LZn2(OMe)2 (5), i(Pr)LZn2(OCHPh2)2 (6), and i(Pr)LZn2(OCH2Ph)2 (7), respectively (isolated yields 48-63%). At 70 degrees C, C6D6 solutions of 6 undergo beta-hydride transfer with 2 equiv of benzaldehyde to form 7 and benzophenone in quantitative yield (according to 1H NMR spectroscopy). Benzene solutions of 1 react with 1 equiv of trimethylsilyl trifluoromethanesulfonate (Me3SiOTf) to form (Me)LZn2(O(i)Pr)(OTf) (8) in 70% isolated yield. In the solid state, 8 features a bridging alkoxide donor as well as a 1,3-bridging triflate group. The previously reported dinuclear organozinc species (Me)LZn2Ph2 (9) reacts with 1 equiv of tert-butylamine to form the protonolysis product (Me)LZn2(Ph)(NH(t)Bu) (10) in 66% isolated yield. The solid-state structure of 10 (two independent molecules) reveals a somewhat asymmetric [Zn2(mu-Ph)(mu-NH(t)Bu)]2+ core with short Zn-Zn separations [2.6761(5) and 2.6518(5) Angstroms]. In CD2Cl2 solution, the Ph bridge of 10 undergoes rapid reversible cleavage. Cleavage of this bridging interaction followed by rotation about the Zn-Ph bond and re-formation of the bridging interaction results in exchange of the inequivalent ortho (and meta) protons of the phenyl ligand. Variable-temperature 1H NMR spectroscopic data indicate that this exchange occurs with DeltaG = 12.7(1) kcal.mol(-1) (-27 degrees C). At 75 degrees C, toluene solutions of (Me)LH2 react with 2 equiv of EtZnNH(t)Bu to form the dizinc bis(amido) product (Me)LZn2(NH(t)Bu)2 (11) in 46% isolated yield. The solid-state structure of 11 (two independent molecules) features a puckered and fairly symmetric [Zn2(mu-NH(t)Bu)2]2+ core with short intermetal separations [2.775(1), 2.760(1) Angstroms].  相似文献   

4.
The first structurally characterized mononuclear biscarbamate complex of Zn with eta1-coordinated carbamate ligands can be prepared by reaction between [EtZn(O2CN(iBu)2)]4 and a guanidine base. Usage of a weaker base leads to eta2-coordinated complexes.  相似文献   

5.
Zinc chemicals are used as activators in the vulcanization of organic polymers with sulfur to produce elastic rubbers. In this work, the reactions of Zn(2+), ZnMe(2), Zn(OMe)(2), Zn(OOCMe)(2), and the heterocubane cluster Zn(4)O(4) with the vulcanization accelerator tetramethylthiuram disulfide (TMTD) and with the related radicals and anions Me(2)NCS(2)(*), Me(2)NCS(3)(*), Me(2)NCS(2)(-), and Me(2)NCS(3)(-) have been studied by quantum chemical methods at the MP2/6-31+G(2df,p)//B3LYP/6-31+G* level of theory. More than 35 zinc complexes have been structurally characterized and the energies of formation from their components calculated for the first time. The binding energy of TMTD as a bidendate ligand increases in the order ZnMe(2)相似文献   

6.
Dimeric zinc complex 2a [ = Et(2)Zn(2)(1a)(2)] has been synthesized by the reaction of Et(2)Zn and (S)-diphenyl(pyrrolidin-2-yl)methanol (1a-H). X-ray crystallography revealed that the alkoxide ligand replaced one of the two ethyl groups of Et(2)Zn and formed a five-membered chelate ring through a Zn-N dative bond. Two zinc centers were bridged by oxygen atoms to form a Zn(2)O(2) four-membered ring with a syn relationship between the two ethyl groups on the zinc centers. Dimeric zinc complex 2a was an active catalyst for asymmetric alternating copolymerization of cyclohexene oxide and CO(2). An MALDI-TOF mass spectrum of the obtained copolymer showed that the copolymerization was initiated by the insertion of CO(2) into Zn-alkoxide to give [(S)-diphenyl(pyrroridin-2-ly)methoxy]-[C(=O)O-(1,2-cyclohexylene)-O](n)-H (copolymer I), including chiral ligand 1a as an initiating group. Complex 3a-OEt ( = EtZn(1a)(2)ZnOEt), in which an ethoxy group replaced one of the two ethyl groups in 2a, also polymerized cyclohexene oxide and CO(2) with higher catalytic activity and enantioselectivity than 2a and afforded EtO-[C(=O)O-(1,2-cyclohexylene)-O](n)-H ( = copolymer III), including an ethoxy group as an initiating group. Throughout the studies, dimeric zinc species are indicated to be the active species for the copolymerization. It is also depicted that the substituent on the aryl moiety in diaryl(pyrrolidin-2-yl)methanol 2b-e influenced the polymerization activity.  相似文献   

7.
The tris(3-tert-butyl-5-methylpyrazolyl)hydroborato zinc hydroxide complex [Tp(Bu)t(,Me)]ZnOH is protonated by (C(6)F(5))(3)B(OH(2)) to yield the aqua derivative [[Tp(Bu)t(,Me)]Zn(OH(2))][HOB(C(6)F(5))(3)], which has been structurally characterized by X-ray diffraction, thereby demonstrating that protonation results in a lengthening of the Zn-O bond by ca. 0.1 A. The protonation is reversible, and treatment of [[Tp(Bu)t(,Me)]Zn(OH(2))](+) with Et(3)N regenerates [Tp(Bu)t(,Me)]ZnOH. Consistent with the notion that the catalytic hydration of CO(2) by carbonic anhydrase requires deprotonation of the coordinated water molecule, [[Tp(Bu)t(,Me)]Zn(OH(2))](+) is inert towards CO(2), whereas [Tp(Bu)t(,Me)]ZnOH is in rapid equilibrium with the bicarbonate complex [Tp(Bu)t(,Me)]ZnOC(O)OH under comparable conditions. The cobalt hydroxide complex [Tp(Bu)t(,Me)]CoOH is likewise protonated by (C(6)F(5))(3)B(OH(2)) to yield the aqua derivative [[Tp(Bu)t(,Me)]Co(OH(2))][HOB(C(6)F(5))(3)], which is isostructural with the zinc complex. The aqua complexes [[Tp(Bu)t(,Me)]M(OH(2))][HOB(C(6)F(5))(3)] (M = Zn, Co) exhibit a hydrogen bonding interaction between the metal aqua and boron hydroxide moieties. This hydrogen bonding interaction may be viewed as analogous to that between the aqua ligand and Thr-199 at the active site of carbonic anhydrase. In addition to the structural similarities between the zinc and cobalt complexes, [Tp(Bu)t(,Me)ZnOH] and [Tp(Bu)()t(,Me)]CoOH, and between [[Tp(Bu)t(,Me)]Zn(OH(2))](+) and [[Tp(Bu)t(,Me)]Co(OH(2))](+), DFT (B3LYP) calculations demonstrate that the pK(a) value of [[Tp]Zn(OH(2))](+) is similar to that of [[Tp]Co(OH(2))](+). These similarities are in accord with the observation that Co(II) is a successful substitute for Zn(II) in carbonic anhydrase. The cobalt hydroxide [Tp(Bu)()t(,Me)]CoOH reacts with CO(2) to give the bridging carbonate complex [[Tp(Bu)t(,Me)]Co](2)(mu-eta(1),eta(2)-CO(3)). The coordination mode of the carbonate ligand in this complex, which is bidentate to one cobalt center and unidentate to the other, is in contrast to that in the zinc counterpart [[Tp(Bu)t(,Me)]Zn](2)(mu-eta(1),eta(1)-CO(3)), which bridges in a unidentate manner to both zinc centers. This difference in coordination modes concurs with the suggestion that a possible reason for the lower activity of Co(II)-carbonic anhydrase is associated with enhanced bidentate coordination of bicarbonate inhibiting its displacement.  相似文献   

8.
Attempts to prepare mixed-ligand zinc-zinc-bonded compounds that contain bulky C(5)Me(5) and terphenyl groups, [Zn(2)(C(5)Me(5))(Ar')], lead to disproportionation. The resulting half-sandwich Zn(II) complexes [(η(5)-C(5)Me(5))ZnAr'] (Ar' = 2,6-(2,6-(i)Pr(2)C(6)H(3))(2)-C(6)H(3), 2; 2,6-(2,6-Me(2)C(6)H(3))(2)-C(6)H(3), 3) can also be obtained from the reaction of [Zn(C(5)Me(5))(2)] with the corresponding LiAr'. In the presence of pyr-py (4-pyrrolidinopyridine) or DBU (1,8-diazabicyclo[5.4.0]undec-7-ene), [Zn(2)(η(5)-C(5)Me(5))(2)] reacts with C(5)Me(5)OH to afford the tetrametallic complexes [Zn(2)(η(5)-C(5)Me(5))L(μ-OC(5)Me(5))](2) (L = pyr-py, 6; DBU, 8), respectively. The bulkier terphenyloxide Ar(Mes)O(-) group (Ar(Mes) = 2,6-(2,4,6-Me(3)C(6)H(2))(2)-C(6)H(3)) gives instead the dimetallic compound [Zn(2)(η(5)-C(5)Me(5))(OAr(Mes))(pyr-py)(2)], 7, that features a terminal Zn-OAr(Mes) bond. DFT calculations on models of 6-8 and also on the Zn-Zn-bonded complexes [Zn(2)(η(5)-C(5)H(5))(OC(5)H(5))(py)(2)] and [(η(5)-C(5)H(5))ZnZn(py)(3)](+) have been performed and reveal the nonsymmetric nature of the Zn-Zn bond with lower charge and higher participation of the s orbital of the zinc atom coordinated to the cyclopentadienyl ligand with respect to the metal within the pseudo-ZnL(3) fragment. Cyclic voltammetric studies on [Zn(2)(η(5)-C(5)Me(5))(2)] have been also carried out and the results compared with the behavior of [Zn(C(5)Me(5))(2)] and related magnesium and calcium metallocenes.  相似文献   

9.
Solutions of the zinc hydroxide complex [Tp(Bu(t),Me)]ZnOH in alcohols (ROH; R = Me, Et, Pr(i)) achieve hydride transfer to the NAD(+) model, 10-methylacridinium perchlorate. Deuterium labeling studies, however, demonstrate that the source of the hydride is not the alcohol but, rather, the B [bond] H group of the [Tp(Bu(t),Me)] ligand. A further example in which a [Tp(Bu(t),Me)] ligand acts as a hydride donor is provided by the reaction of the aqua complex [[Tp(Bu(t),Me)]Zn(OH(2))][HOB(C(6)F(5))(3)] with MeOH to generate the zinc hydride complex [Tp(Bu(t),Me)]ZnH. The present study therefore provides a caveat for the often assumed inertness of the B [bond] H group in tris(pyrazolyl)hydroborato ligands, especially in the presence of reactive cationic species.  相似文献   

10.
The first organometallic clusters of mixed hydrazide/hydroxylamide clusters of zinc, [Zn(MeZn)(4)(HNNMe(2))(2)(ONEt(2))(4)] and {Zn(EtZn)(4)[HNN(CH(2))(5)](2)(ONEt(2))(4)} were synthesized in one-pot synthesis protocols from dialkylzinc solutions, substituted hydrazines and N,N-diethylhydroxylamine; competing for the Zn atoms, the different binding properties of hydrazide and hydroxylamide ligands in these heteroleptic clusters are discussed.  相似文献   

11.
The molecular structure of the tris(2-mercapto-1-tolylimidazolyl)hydroborato complex [[Tm(p-Tol)]Zn(mim(p-Tol))][ClO(4)].3MeCN has been determined by X-ray diffraction, thereby demonstrating that the mim(p-Tol) ligand exhibits a N-H...O hydrogen bond with the [ClO(4)](-) counterion, [[Tm(p-Tol)]Zn(mim(p-Tol))...(OClO(3))], rather than hydrogen bond with a sulfur of the [Tm(p-Tol)] ligand. DFT calculations on a series of related complexes, namely [[Tm(Me)]Zn(mim(Me))](+), [[Tm(Me)]Zn(mim(Me))]...(OClO(3))], [[Tm(Me)]Zn(mim(Me))]...[O(H)Me]](+), and [[Tm(Me)]Zn(mim(Me))]...(NCMe)](+) demonstrate that an intramolecular N-H...S hydrogen bond within [[Tm(Me)]Zn(mim(Me))](+) is also less favored than the corresponding hydrogen bonding interactions with MeCN, MeOH, and [ClO(4)](-). The inability of the sulfur atoms of [Tm(R)] ligand to act as an effective hydrogen bond acceptor is in marked contrast to the ability of sulfur atoms in thiolate ligands to participate in the formation of N-H...S hydrogen bonds, an observation that reflects the "thione"versus"thiolate" nature of the [Tm(R)] ligand.  相似文献   

12.
The 1/1 reaction of Et2Zn with N-t-butyliminopropanone (t-BuNC(H)C(Me)O) leads to quantitative formation of dinuclear [EtZn(Et)(t-Bu)NC(H)=C(Me)O]2 via ethyl transfer within the unstable Et2Zn(t-BuNC(H)?C(Me)O) complex. An X-ray structure determination has shown the product to have a dinuclear structure involving a N,O-chelate bonded [Et(t-Bu)NC(H)C(Me)O]? mono-anionic ligand and a central four membered Zn2O2 ring formed by intermolecular ZnO coordination. Hydrolysis of this zinc complex gives a quantitative yield of N-t-butyl-N-ethylamino propanone, which upon reaction with Et2Zn reforms the dinuclear zinc complex.  相似文献   

13.
The formal insertions of carbon dioxide into a series of methylzinc dialkylamide complexes (MeZnNR(2)) initially form solvent-free, tetrameric zinc carbamato complexes [Me(4)Zn(4)(O(2)CNR(2))(4)] (NR(2) = N(i-Pr)(2) (1), N(i-Bu)(2) (2), and piperidinyl (3)). These compounds have been characterized by traditional techniques as well as by single-crystal X-ray diffraction analyses. The tetrameric backbones seen in the solid state for 1-3 were structurally similar to each other. Addition of excess pyridine (py) to 1-3 breaks apart the tetramers and converts them into solvated dimeric species [Me(2)Zn(2)(O(2)CNR(2))(2)(py)(2)] (NR(2) = N(i-Pr)(2) (4), N(i-Bu)(2) (5), and piperidinyl (6)). X-ray crystallographic analyses of 4 and 5 confirmed the dimeric structure in the solid state. This study significantly increases the number of well-characterized zinc carbamates prepared via CO(2) insertion into zinc amides.  相似文献   

14.
Attempts to produce Zn analogues of the structural model complexes [M2(mu-O2CR)2(O2CR)2(mu-H2O)(tmen)2] (M = Ni, Co, Mn; R = CH(3), C(CH3)3, CF3) by the reaction of a series of zinc carboxylates with N,N,N',N'-tetramethylethylenediamine (tmen), resulted in the mononuclear complexes [Zn(OAc)(2)(tmen)] (1) and [Zn(crot)2(tmen)].(0.5)H2O (2) for R = CH3 and (CH)2CH3, respectively, and the dinuclear complexes [Zn(2)(mu-piv)(2)(piv)(2)(mu-H2O)(tmen)2] (3) and [Zn2(mu-OAc(F))2(OAc(F))2(mu-H2O)(tmen)2] (4) for R = C(CH3)3 and CF3, respectively. In contrast to the analogous imidazole series, i.e., [M2(mu-O2CR)2(O2CR)2(mu-H2O)(Im)4] (M = Ni, Co, Mn; R = CH3, C(CH3)3, CF3), zinc carboxylates react with imidazole to give only the mononuclear complexes [Zn(OAc)2(Im)2] (5), [Zn(crot)2(Im)2].H2O (6), [Zn(piv)2(Im)2].(0.5)H2O (7), and [Zn(OAc(F))2(Im)2] (8). Reaction of 1, 2, and 3 with either acetohydroxamic acid (AHA) or benzohydroxamic acid (BHA) gives the dinuclear complexes [Zn2(O2CR)3(R'A)(tmen)], where R'A = acetohydroxamate (AA) (9, 10, 11) or benzohydroxamate (BA) (13, 14, 15). In these complexes, the zinc atoms are bridged by a single hydroxamate and two carboxylates, with a capping tmen ligand on one zinc and a monodentate carboxylate bonded to the second zinc atom. This composition models closely the observed structure of the active site of the p-iodo-d-phenylalanine hydroxamic acid inhibited Aeromonas proteolyticaaminopeptidase enzyme. In contrast, 4 reacts with AHA to give [Zn2(OAc(F))3(tmen)2(AA)] (12) with an additional tmen ligand so that both Zn atoms are 6-coordinate, whereas reaction with BHA gives the trinuclear complex [Zn3(OAc(F))4(tmen)2(BA)2] (16). Reactions of 3 and 4 with glutarodihydroxamic acid (GluH2A2) produce the tetranuclear complexes [Zn4(piv)6(tmen)4(GluA2)] (18) and [Zn4(OAc(F))6(tmen)4(GluA2)] (19).  相似文献   

15.
Treatment of the mononuclear amide-appended zinc complex [(ppbpa)Zn](ClO4)2 (1(ClO4)2) with Me4NOH.5H2O in CD3CN/D2O (3:1) results in the formation of the deprotonated amide species [(ppbpa-)Zn]ClO4 (2). Upon heating in CD3CN/D2O, this complex undergoes amide hydrolysis to produce a zinc carboxylate product, [(ambpa)Zn(O2CC(CH3)3)]ClO4 (3). X-ray crystallography, 1H and 13C NMR, IR, and elemental analysis were used to characterize 3. The hydrolysis reaction of 1(ClO4)2 exhibits saturation kinetic behavior with respect to the concentration of D2O. Variable-temperature kinetic studies of the amide hydrolysis reaction yielded DeltaH++ = 18.0(5) kcal/mol and DeltaS++ = -22(2) eu. These activation parameters are compared to those of the corresponding amide methanolysis reaction of 1(ClO4)2.  相似文献   

16.
The first systematic theoretical and experimental studies of reaction systems involving ZnR(2) (R=Me, Et or tBu) with dibenzoyl (dbz) as a non-innocent ligand revealed that the character of the metal-bonded R group as well as the ratio of the reagents and the reaction temperature significantly modulate the reaction outcome. DFT calculations showed four stable minima for initial complexes formed between ZnR(2) and dbz and the most stable structure proved to be the 2:1 adduct; among the 1:1 adducts three structural isomers were found of which the most stable complex had the monodentate coordination mode and the chelate complex with the s-cis conformation of the dbz unit appeared to be the least stable form. Interestingly, the reaction involving ZnMe(2) did not lead to any alkylation product, whereas the employment of ZntBu(2) resulted in full conversion of dbz to the O-alkylated product [tBuZn{PhC(O)C(OtBu)Ph}] already at -20 °C. A more complicated system was revealed for the reaction of dbz with ZnEt(2). Treatment of a solution of dbz in toluene with one equivalent of ZnEt(2) at room temperature afforded a mixture of the O- and C-alkylated products [EtZn{PhC(O)C(OEt)Ph}] and [EtZn{OC(Ph)C(O)(Et)Ph}], respectively. The formation of the C-alkylated product was suppressed by decreasing the initial reaction temperature to -20 °C. Moreover, in the case of the dbz/ZnEt(2) system monitoring of the dbz conversion over the entire reaction course revealed a product inhibition effect, which highlights possible participation of multiple equilibria of different zinc alkoxide/ZnEt(2) aggregates. Diffusion NMR studies indicated that dbz forms an adduct with the O-alkylated product, which is a competent species for executing the inhibition of the alkylation event.  相似文献   

17.
Acid-catalysed hydrolysis of [CH2[(Sn(Ph2)CH2Si(OiPr)Me2]2] followed by subsequent reaction with mercuric chloride in acetone afforded the novel silicon- and tin-containing eight-membered ring [cyclo-CH2[Sn(Cl2)CH2Si(Me2)]2O] in good yield, the crystal structure of which is reported. 119Sn NMR and X-ray studies indicate that [cyclo-CH2[Sn(Cl2)CH2Si(Me2)]2O] acts as a bidentate Lewis acid towards chloride ions exclusively forming the 1:1 complex [(Ph3P)2N]+[cyclo-CH2[Sn(Cl2)CH2Si(Me2)]2OCl]- upon addition of [(Ph3P)2N]+Cl- . Also reported are the synthesis and structure of [K(dibenzo[18]crown-6)]+[cyclo-CH2(Sn(Cl2)CH2Si(Me2)]2OF]-, the first completely characterised organostannate with a C2SnCl2F- substituent pattern. No ring-opening polymerisation could be achieved for [cyclo-CH2[Sn(Cl2)CH2Si(Me2)]2O] or for its perphenylated derivative [cyclo-CH2[Sn(Ph2)CH2Si(Me2)]2O]. The reaction of [cyclo-CH2[Sn(Cl2)CH2Si(Me2)]2O] with Me3O+BF4- gave the tin-containing fluorosilane [CH2[Sn(Cl2)CH2Si(F)Me2]2], in which the Si-F bond is activated by intermolecular Si-F...Sn interactions in the solid state.  相似文献   

18.
Dimethylzinc reacts with an excess of N-2-pyridylaniline 6 to give the homoleptic species, Zn[PhN(2-C(5)H(4)N)](2) 8. Single crystal X-ray diffraction reveals a solid-state dimer based on an 8-membered (NCNZn)(2) core motif. Zn[CyN(2-C(5)H(4)N)]Me (Cy =c-C(6)H(11)) 10, prepared by the combination of ZnMe(2) with the corresponding cyclohexyl-substituted pyridylamine, is also dimeric in the solid state but reveals a central (ZnN)(2) metallacycle. Employment of (p-Tol)NH(2-C(5)H(4)N)(p-Tol = 4-MeC(6)H(4)) 11 yielded the tris(zinc) adduct Zn(3)[(p-Tol)N(2-C(5)H(4)N)](4)Me(2) 12, which incorporates a central chiral molecule of 'Zn[(p-Tol)N(2-C(5)H(4)N)](2)' 12a, that bridges two 'Zn[(p-Tol)N(2-C(5)H(4)N)]Me' 12b units. A similar trimetallic structure is noted when the pyridylaniline substrate 11 is replaced with the bicyclic guanidine 1,3,4,6,7,8-hexahydro-2H-pyrimido[1,2-a]pyrimidine (hppH), affording Zn(3)(hpp)(4)Me(2) 13. Spectroscopic studies point to retention of the solid-state structure of in hydrocarbon solution. Reaction of 13 with dimesityl borinic acid, Mes(2)BOH (Mes = mesityl), affords Zn(3)(hpp)(4)(OBMes(2))(2) 14 in which the trimetallic core is retained. This reactivity is in contrast to the closely related reaction of dimeric Zn[Me(2)NC[N(i)Pr](2)]Me 15 with Mes(2)BOH, which yielded Zn[Me(2)NC[N(i)Pr](2)][OBMes(2)].Me(2)NC[N(i)Pr][NH(i)Pr] 16 as a result of protonation at the guanidine ligand in addition to the Zn-Me bond.  相似文献   

19.
A new polyoxovanadate [Zn2(dien)3][[Zn(dien)]2As4V16O42(H2O)] x 3H2O (1, dien = diethylenetriamine) has been hydrothermally synthesized and structurally characterized by EA, IR, TGA, magnetic measurement and single crystal X-ray diffraction. X-Ray diffraction analyses reveal that 1 exhibits the first [As4V16O42(H2O)]-containing polyoxometalate. In 1, the adjacent [As4V16O42(H2O)] clusters are linked to each other through dual mono-nuclear zinc complexes {Zn(dien)} to form one-dimensional anionic chains with isolated dinuclear zinc complexes [Zn2(dien)3] occupying the interchain regions as charge compensation. The study of the magnetic susceptibility demonstrates the presence of antiferromagnetic interaction between VIV cations in 1.  相似文献   

20.
The reactions of Zn(OAc)(2) with acetoacetanilide, methyl acetoacetate, o-acetoacetanisidide, and ethyl 2-methylacetoacetate thiosemicarbazones (HTSC(1), HTSC(2), HTSC(3), and HTSC(4), respectively) were explored in methanol. With HTSC(1), HTSC(2), and HTSC(3), following isolation of the corresponding zinc(II) thiosemicarbazonates [Zn(TSC(x))(2)] (x = 1, 2, 3), the mother liquors afforded pyrazolonate complexes [ZnL(1)(2)(H(2)O)] (HL(1) = 2,5-dihydro-3-methyl-5-oxo-1H-pyrazole-1-carbothioamide) that had been formed by cyclization of the corresponding TSC(-). The reaction of HTSC(4) with zinc(II) acetate gave only the pyrazolonate complex [ZnL(2)(2)(H(2)O)] (HL(2) = 2,5-dihydro-3,4-dimethyl-5-oxo-1H-pyrazole-1-carbothioamide). All compounds were studied by IR and NMR spectroscopy, and HTSC(3), [Zn(TSC(3))(2)] x DMSO, [ZnL(1)(2)(H(2)O)] x 2DMSO, and [ZnL(2)(2)(H(2)O)] x 2DMSO were also studied by X-ray diffractometry, giving a thorough picture of the cyclization process. In preliminary tests of the effects of HL(1) and [ZnL(1)(2)(H(2)O)] on rat paw inflammatory edema induced by carrageenan, HL(1) showed antiinflammatory activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号