首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
Li  ZhiHong  Li  ErTao  Su  Jun  Li  YunJu  Bai  XiXiang  Guo  Bing  Wang  YouBao  Chen  YongShou  Hou  SuQing  Zeng  Sheng  Lian  Gang  Shi  JianRong  Liu  WeiPing 《中国科学:物理学 力学 天文学(英文版)》2011,54(1):67-72
Lithium isotopes have attracted an intense interest because the abundance of both 6Li and 7Li from big bang nucleosynthesis (BBN) is one of the puzzles in nuclear astrophysics. Many investigations of both astrophysical observation and nucleosynthesis calculation have been carried out to solve the puzzle, but it is not solved yet. Several nuclear reactions involving lithium have been indirectly measured at China Institute of Atomic Energy, Beijing. The Standard BBN (SBBN) network calculations are then performed to investigate the primordial Lithium abundance. The result shows that these nuclear reactions have minimal effect on the SBBN abundances of 6Li and 7Li.  相似文献   

2.
Within the standard Big Bang nucleosynthesis (BBN) and cosmic microwave background (CMB) framework, the baryon density measured by the Wilkinson Microwave Anisotropy Probe (WMAP) or the primordial D abundance is much higher than the one measured by the 4He or 7Li abundances. To solve the discrepancy, we propose a scenario in which additional baryons appear after BBN. We show that simply adding the baryons cannot be a solution but the existence of a large lepton asymmetry before BBN makes the scenario successful. These extra baryons and leptons, in addition to the initial baryons which exist before the BBN, can be all produced from Q-balls.  相似文献   

3.
Taking into account effects of late energy injection, we examine big bang nucleosynthesis (BBN) constraints on axino dark matter scenarios with long-lived charged sleptons. We calculate 4-body slepton decays into the axino, a lepton, and a quark–antiquark pair since they govern late hadronic energy injection and associated BBN constraints. For supersymmetric hadronic axion models, we present the obtained hadronic BBN constraints and show that they can be more restrictive than the ones associated with catalyzed BBN via slepton-bound-state formation. From the BBN constraints on hadronic and electromagnetic energy release, we find new upper limits on the Peccei–Quinn scale.  相似文献   

4.
Atomic nuclear clusters play a crucial role in nucleosynthesis in the universe, especially in the main sequence of heavy element synthesis. Cluster aspects in nucleosynthesis are briefly discussed based on a Cluster-Nucleosynthesis Diagram proposed here. Two recent topics on critical α-induced thermonuclear reactions are reviewed; the first one is the12C(α, γ)16O reaction for the He burning stage and the other one is the6 Li(α, n) 11B reaction for the big bang nucleosynthesis. A new field of nuclear astrophysics using radioactive nuclear beams is also discussed.  相似文献   

5.
The nuclear physics input from the 3He(alpha,gamma)7Be cross section is a major uncertainty in the fluxes of 7Be and 8B neutrinos from the Sun predicted by solar models and in the 7Li abundance obtained in big-bang nucleosynthesis calculations. The present work reports on a new precision experiment using the activation technique at energies directly relevant to big-bang nucleosynthesis. Previously such low energies had been reached experimentally only by the prompt-gamma technique and with inferior precision. Using a windowless gas target, high beam intensity, and low background gamma-counting facilities, the 3He(alpha,gamma)7Be cross section has been determined at 127, 148, and 169 keV center-of-mass energy with a total uncertainty of 4%. The sources of systematic uncertainty are discussed in detail. The present data can be used in big-bang nucleosynthesis calculations and to constrain the extrapolation of the 3He(alpha,gamma)7Be astrophysical S factor to solar energies.  相似文献   

6.
The consequence of abnormally low lithium abundance in a nearby population II star (which is almost as old as the supposed population III stars) as represented by HE0107-5240 is that the standard BBN theory is out of sync with observations. The analysis of the big bang nucleosynthesis may help explain the anomalously low value of lithium abundance in the star HE0107-5240, which by orthodox BBN, should not exist, as explained by Shigeyama et al. (2003) [1].  相似文献   

7.
We consider the phenomenological consequences of sampling multiple vacua during inflation motivated by an enormous landscape. A generic consequence of this sampling is the formation of domain walls, characterized by the scale mu of the barriers that partition the accessed vacua. We find that the success of big bang nucleosynthesis (BBN) implies mu > or = 10 TeV, as long as the sampled vacua have a nondegeneracy larger than O(MeV4). Otherwise, the walls will dominate and eventually form black holes that must reheat the universe sufficiently for BBN to take place; in this case, we obtain mu > or = 10(-5)MP. These black holes are not allowed to survive and contribute to cosmic dark matter density.  相似文献   

8.
A brief review of standard big bang nucleosynthesis theory and the related observations of the light element isotopes is presented. Implications of BBN on chemical evolution and constraints on particle properties will also be discussed.  相似文献   

9.
If there is a light Abelian gauge boson gamma' in the hidden sector its kinetic mixing with the photon can produce a hidden cosmic microwave background (HCMB). For meV masses, resonant oscillations gamma<-->gamma' happen after big bang nucleosynthesis (BBN) but before CMB decoupling, increasing the effective number of neutrinos Nnu(eff) and the baryon to photon ratio, and distorting the CMB blackbody spectrum. The agreement between BBN and CMB data provides new constraints. However, including Lyman-alpha data, Nnu(eff) > 3 is preferred. It is tempting to attribute this effect to the HCMB. The interesting parameter range will be tested in upcoming laboratory experiments.  相似文献   

10.
Big-bang nucleosynthesis (BBN) and cosmic microwave background (CMB) anisotropy measurements give independent, accurate measurements of the baryon density and can test the framework of the standard cosmology. Early CMB data are consistent with the long-standing conclusion from BBN that baryons constitute a small fraction of matter in the Universe, but may indicate a slightly higher value for the baryon density. We clarify precisely what the two methods determine and point out that differing values for the baryon density can indicate either an inconsistency or physics beyond the standard models of cosmology and particle physics. We discuss other signatures of the new physics in CMB anisotropy.  相似文献   

11.
We consider the stochastic background of gravitational waves produced by a network of cosmic strings and assess their accessibility to current and planned gravitational wave detectors, as well as to big bang nucleosynthesis (BBN), cosmic microwave background (CMB), and pulsar timing constraints. We find that current data from interferometric gravitational wave detectors, such as Laser Interferometer Gravitational Wave Observatory (LIGO), are sensitive to areas of parameter space of cosmic string models complementary to those accessible to pulsar, BBN, and CMB bounds. Future more sensitive LIGO runs and interferometers such as Advanced LIGO and Laser Interferometer Space Antenna (LISA) will be able to explore substantial parts of the parameter space.  相似文献   

12.
There are many explosive processes in nucleosynthesis: big bang nucleosynthesis, the rp-process, the γ-process, the ν-process, and the r-process. However, I will discuss just the rp-process and the r-process in detail, primarily because both seem to have been very active research areas of late, and because they have great potential for studies with radioactive nuclear beams. I will also discuss briefly the γ-process because of its inevitability in conjunction with the rp-process. Received: 1 May 2001 / Accepted: 4 December 2001  相似文献   

13.
I consider the synthesis of 6Li due to the decay of relic particles, such as gravitinos or moduli, after the epoch of big bang nucleosynthesis. The synthesized 6Li/H ratio may be compared to 6Li/H in metal-poor stars which, in the absence of stellar depletion of 6Li, yields significantly stronger constraints on relic particle densities than the usual consideration of overproduction of 3He. Production of 6Li during such an era of nonthermal nucleosynthesis may also be regarded as a possible explanation for the relatively high 6Li/H ratios observed in metal-poor halo stars.  相似文献   

14.
Within the standar dmodel of Big Bang Nucleosynthesis (BBN), there is a cosmological lithium problem, which consists in a substantial difference between calculated data on the abundances of the isotopes 6Li and 7Li and those that were found from observational astronomy. An attempt at measuring the cross section for the main 6Li production reaction 2H(4He, γ)6Li induced by the interaction of 4He+ ions with deuterons at collision energies less than the lower boundary of the BBN energy range was made in the present study. Upper limits on the cross sections for the reaction in question were set.  相似文献   

15.
Primordial gravitational waves (GWs) with frequencies > or approximately equal to 10(-15) Hz contribute to the radiation density of the Universe at the time of decoupling of the cosmic microwave background (CMB). This affects the CMB and matter power spectra in a manner identical to massless neutrinos, unless the initial density perturbation for the GWs is nonadiabatic, as may occur if such GWs are produced during inflation or some post-inflation phase transition. In either case, current observations provide a constraint to the GW amplitude that competes with that from big-bang nucleosynthesis (BBN), although it extends to much lower frequencies (approximately 10(-15) Hz rather than the approximately 10(-10) Hz from BBN): at 95% confidence level, omega(gw)h(2) 相似文献   

16.
Big bang nucleosynthesis can provide, via constraints on the expansion rate at that time, limits on possible variations in Newton's constant, G. The original analyses were performed before an independent measurement of the baryon-to-photon ratio from the cosmic microwave background was available. Combining this with recent measurements of the primordial deuterium abundance in quasar absorption systems now allows one to derive a new tighter constraint on G without recourse to considerations of helium or lithium abundances. We find that, compared to today's value, G0, G(BBN)/G(0)=1.01(+0.20)(-0.16) at the 68% confidence level.  相似文献   

17.
Recent models invoking extra space-like dimensions inhabited by (bulk) neutrinos are shown to have significant cosmological effects if the size of the largest extra dimension is R greater, similar 1 fm. We consider effects on cosmic microwave background anisotropies, big bang nucleosynthesis, deuterium and 6Li photoproduction, diffuse photon backgrounds, and structure formation. The resulting constraints can be stronger than either bulk graviton overproduction constraints or laboratory constraints.  相似文献   

18.
介绍了星际 26Al衰变所发射1 809 keV γ射线的最新空间探测结果, 综述了目前关于星际 26Al起源的各种天体模型的研究进展。最后, 简要阐述了14N(p,γ)15O反应截面的最新测量结果及其对 26Al起源研究的影响, 探讨了一种星际 26Al合成的可能新途径。The recently detection outcome about interstellar 26Al is introduced, as well as the investigation progresses of interstellar 26Al nucleosynthesis in all models are reviewed. Finally, the new nuclear physics experimental results for the14N(p,γ)15O reaction effect on sources of interstellar 26Al and an alternative new way for nucleosynthesis 26Al in SNIa are discussed.  相似文献   

19.
The heavy gravitino in the minimal supergravity (mSUGRA) models is likely to be the lightest supersymmetric particle (LSP). Produced from the late decays of the metastable weakly interacting massive particles (WIMPs) such as the lightest neutralinos, the stable gravitinos can be plausible candidates for the cold dark matter in the universe. Such gravitino dark matter can naturally evade the current detection experiments due to its superweak couplings. However, this scenario must be subjected to the constraints from the big bang nucleosynthesis (BBN) predictions for light element abundances as well as the Wilkinson microwave anisotropy probe (WMAP) data for the relic density. Assuming the popular case in which the lightest neutralino is the next-to-lightest supersymmetric particle (NLSP), we find that requiring BBN predictions for light element abundances to agree with the WMAP data can impose upper and lower mass bounds on both the gravitino LSP and the neutralino NLSP. A scan over the mSUGRA parameter space, subjected to the BBN constraints, the WMAP data and the bounds, shows that the low ( ) region as well as the region accessible at the CERN Large Hadron Collider (LHC) will be severely constrained. Such stringent constraints on the parameter space might be instructive for testing this scenario in future collider experiments.Received: 17 August 2004, Revised: 9 September 2004, Published online: 3 November 2004  相似文献   

20.
Ion storage rings and ion traps provide the very first opportunity to address nuclear beta decay under conditions prevailing in hot stellar plasmas during nucleosynthesis, i.e. at high atomic charge states. Experiments are summarized that were performed in this field during the last decade at the ion storage-cooler ring ESR in Darmstadt. Special emphasis is given to the first observation of bound-state beta decay, where the created electron remains bound in an inner orbital of the daughter atom. The impact of this specific ‘stellar’ decay mode for s-process nucleosynthesis as well as for nuclear ‘eon clocks’ is outlined. Finally, a new technique, single-ion decay spectroscopy, is presented, where one observes two-body beta decay characteristics (i.e. orbital electron capture or bound-state beta decay) of highly charged, single ions for well-defined nuclear and atomic quantum states of both the mother – and the daughter – ion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号