首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
The present work reviews the recent achievements in probing bulk properties of quasicrystals by using cleavage surfaces and surface sensitive techniques. In particular, it is shown that the cluster–subcluster-based structure of the cleavage surface of icosahedral Al–Pd–Mn quasicrystals can be related to the presence of stable atom clusters in the bulk, which force the crack front to circumvent them. Furthermore, by subjecting cleavage surfaces of differently pre-annealed Al–Pd–Mn quasicrystals to a post-cleavage heat treatment, we demonstrate that bulk vacancies migrate toward the surface, where they initiate structure and composition changes. These studies allow us to characterize Al–Pd–Mn quasicrystals with respect to their bulk vacancy concentration. As-grown Al–Pd–Mn quasicrystals are found to contain a supersaturation of all chemical species of vacancies in near stoichiometric composition, whereas long term pre-annealed material has a much lower, and predominantly Al, vacancy concentration. Analogous experiments for decagonal Al–Ni–Co quasicrystals show that as-grown Al–Ni–Co has a lower vacancy concentration than as-grown Al–Pd–Mn.  相似文献   

2.
Thin metal films with a thickness of one or over one monolayer formed on quasicrystalline surfaces were studied using reflection high-energy electron diffraction, X-ray photoelectron spectroscopy, X-ray photoelectron diffraction and scanning tunneling microscopy. The substrates were the 10f surface of d-Al–Ni–Co and the 5f surface of i-Al–Pd–Mn. The metals deposited were Au, Pt, Ag and In. None of these metals forms any ordered layer by deposition onto clean quasicrystalline surfaces. However, if a submonolayer of In is present atop the 10f surface, an epitaxial layer of multiply-twinned AuAl2 crystals is formed by Au deposition and subsequent annealing. This is also the case for Pt deposition, but not for Ag deposition. Although the surfactant effect of In is also observed in the case of Au deposition on the 5f surface of i-Al–Pd–Mn, the ordered layer formed is a film of Au–Al alloy with icosahedral symmetry. No ordered films are formed by Pt or Ag deposition onto the 5f surface, regardless of the presence of an In-precovered layer. A Sn film monolayer induced by surface diffusion was also studied.  相似文献   

3.
The transport characteristics of the blue copper metalloprotein, azurin, have been characterised by conducting atomic force microscopy (C-AFM) at molecular level. Tunnel junctions have been constructed by sandwiching chemisorbed protein molecules between a conducting AFM tip and a planar conducting substrate. Asymmetric current curves with respect to the polarity of the bias (IV) have been observed. The modulation of IV behaviour with compressional force has been examined and is described by a modified Simmons model within which both tunnel distance (protein dimensions) and tunnel barrier are modulated. The modified Simmons formula, which considered unequal Fermi level shifts on two electrodes as being responsible for the asymmetric IV curves, accurately describes the behaviour observed.  相似文献   

4.
Angle-resolved low-energy ion scattering is a valuable technique for examining the topmost surface layers of materials. Using this technique, information about both composition and structure can be obtained. We discuss the physical basis of this technique and present our findings for the fivefold surface of icosahedral (i-) Al–Pd–Mn. Our results clearly show that the exposed surface has a higher Al content than the bulk and can have fivefold periodicity. Information about frequently occurring interatomic distances on the surface can also be obtained by this technique. We discuss the results and compare them to recent scanning tunneling microscopy studies and to bulk structure models.  相似文献   

5.
We have investigated the atomic and electronic structure, chemical composition, and oxidation characteristics of the surfaces of icosahedral, Al-rich quasicrystals, using a variety of surface-sensitive techniques (LEED, XPS, STM, AES). We have systematically investigated the way that these traits vary with preparation conditions (e.g. sputtering and then annealing to various temperatures, vs. fracture), with surface symmetry (e.g. 2f vs. 3f vs. 5f surfaces), and with bulk composition (e.g. i-Al–Pd–Mn vs. i-Al–Cu–Fe). We have also compared our results for the quasicrystals with results for crystalline approximants and other related crystalline phases. Our main conclusions are that, under specific conditions of sputter-annealing, the bulk atomic and electronic structures of the clean quasicrystal propagate to the surface. Also, the oxidation chemistry is dominated by that of the primary constituent, aluminum.  相似文献   

6.
Raman and infrared spectra of propylgermane, CH3CH2CH2GeH3, and its Ge-deuterated analog, CH3CH2CH2GeD3, were investigated in their gaseous, liquid and solid states. The normal coordinate treatment was carried out by density functional theory (DFT) calculation, using B3LYP/6-31G* and 6-311++G** basis sets, and the corresponding fundamental vibrations were assigned. The trans (T) and gauche (G) forms around the central C–C bond coexisted in the gaseous and liquid states and only the T form existed in the solid state. From the temperature dependent measurements of the Raman spectra in the liquid state, the enthalpy difference was found to be ΔH(TG)=−0.36±0.02 kcalmol−1 with the T form being more stable. The energy differences between the isomers obtained by DFT calculations were ΔE(TG)=−0.46 kcalmol−1 and ΔE(TG)=−0.87 kcalmol−1 by the 6-31G* basis set and 6-311++G** basis set, respectively.  相似文献   

7.
Electrical and thermal transport properties of quasicrystals are reviewed on the examples of i-Ag-In-Yb and i-Al-Cu-Fe icosahedral phases and d-Al-Co-Ni decagonal phase. Using samples of single-grain morphology and high structural quality, and performing the measurements along well-defined crystallographic directions, the following basic questions in the context of physical properties of quasicrystals are addressed, both experimentally and theoretically: (1) are the unusual transport properties of quasicrystals introduced by the quasiperiodicity of the structure or are they a consequence of complex local atomic order with no direct relationship to the quasiperiodicity; (2) what is the role of the electronic structure of quasicrystals in their electronic transport properties, especially the pseudogap in the electronic density of states in the vicinity of the Fermi energy; (3) what is the anisotropy of the transport coefficients along different crystallographic directions for icosahedral and decagonal quasicrystals and (4) what are the true intrinsic properties of quasicrystalline phases?  相似文献   

8.
The vibrating tube densimeter method along with the Forced Path Mechanical Calibration model, is used to measure the high pressure isothermal pρ behavior of the CO2+propane system along 17 isotherms between 293 and 343 K, at pressures up to 70 MPa. The compositions cover the range of mole fractions from xCO2=0.45 to 1.0. The uncertainty in temperatures is ±0.015 K. The uncertainties in pressures are ±0.0013 MPa from 0.1 to 15.0 MPa and ±0.010 MPa from 5.0 to 70.0 MPa. The precision of the density measurements is ±0.014 kg m−3. The minimum global uncertainty is ±0.204 kg m−3, based on the calibration of the densimeter with pure water. A generalized Helmholtz energy model for mixtures is used to check the consistency of the new data with respect to previous pρT studies of this mixture. The average absolute deviation of our data with respect to the model is 0.64% which is fully consistent with the assessed accuracy.  相似文献   

9.
The objective of this study is to investigate experimentally and numerically into heat-up, drying and pyrolysis of a packed bed consisting of large single particles. The novelty of the current approach is that the numerical model contrary to continuum mechanic approaches considers a packed bed as an ensemble of a finite number of particles, which may have different material properties or sizes. The heat-up, drying and pyrolysis process of each particle is described sufficiently accurate by a set of one-dimensional and transient differential conservation equations for mass and energy. Applying this model to all particles, including interactions between them, of a packed bed forms the entire backed bed process as a sum of individual particle processes. The arrangement of particles within a bed defines a void space between the particles. The flow through the void space of a packed bed is modelled as a flow through a porous media taking into account interaction between the solid and the gaseous phase by heat and mass transfer. Experiments for drying and pyrolysis of a packed bed were carried out for validation in a temperature range of T=120–530 °C. The temperatures and the mass loss due to drying and pyrolysis were recorded during the experiments. The measured mass loss of the packed bed due to drying were well predicted by the constant evaporation temperature model of the particles and thus, indicating, that the drying process is transport limited by heat transfer for large wood particles in a temperature range of T=120–530 °C. A comparison between experiments and predictions of pyrolysis yielded reasonable agreement for temperatures above T=300 °C. For temperatures of T≈200 °C the deviations were not acceptable. However, the results show, that a particle resolved approach is well suited to describe packed bed processes.  相似文献   

10.
The dipole moment and polarizability changes have been determined from electroabsorption (EA) spectroscopy of solid films of fac tris(2-(phenyl)pyridinato,N,C2′)iridium (III) [Ir(ppy)3]. The maximum changes in the dipole moment |Δμ|S=(5.0±0.5) D/f (f is the local field correction factor: 1.3–1.7) accompany ground state to the lowest singlet, and |Δμ|T=(1.7±0.5) D/f ground state to the lowest triplet metal-to-ligand charge transfer (MLCT) excited states formation, while the average polarizability change Å3/f2 follows from the fitting procedure throughout the visible absorption spectrum range. The experimental values of |Δμ| as well as energy positions of the MLCT states correlate with the literature results of time-dependent density functional theory.  相似文献   

11.
We present a review of the determination of density of states (DOS) of quasicrystals using valence band photoemission spectroscopy. The absence of fine or spiky structure in the angle-integrated DOS of quasicrystals suggests the possibility of delocalized electronic states. These were confirmed with angle-resolved photoemission studies, which clearly establish the presence of dispersing features attributed to momentum-dependent bandstructure. Such dispersing states are observed not only for deeper-lying sp states, but also for d-derived bands near the Fermi level. Data from three different high symmetry surfaces of decagonal Al–Ni–Co, an ideal model system, are presented. We find that only a few dominant reciprocal lattice vectors are sufficient to describe the quasiperiodic potential, and the implications for electronic properties are discussed.  相似文献   

12.
For- -Pro- -Pro-NH2 is an ab initio model of the prolyl-proline sequence unit present in numerous peptides and proteins. Cistrans isomerization of the peptide linkage is a crucial step in accessing the active conformation of several proline containing macromolecules.

The present study focuses on the flexibility of the five-membered pyrrolidine ring, which is considered to help other conformational changes as well as cistrans isomerization. Ring flexibility is characterized by the pseudorotational amplitude, A, and the phase angle, P. Calculations are carried out at the RHF/6-31+G(d) level of theory. The choice of method and level of theory is further supported by single point DFT calculations.

In the course of NMR structure determination of peptides or proteins, proline residues present in the sequences need special attention. Because of the lack of an amide hydrogen, sequential assignment of proline is rather complicated. Furthermore, in solution state, peptide cistrans isomers are almost always present. Ab initio study on the For- -Pro- -Pro-NH2 model is a useful tool to discover the structural characteristics of the prolyl-proline sequence unit.  相似文献   


13.
A procedure of analysis for small-angle X-ray scattering (SAXS) data has been established to obtain density fluctuation of supercritical fluids near the critical point. It is indispensable for the certain analysis to utilize both of high-quality SAXS data measured under stable thermodynamic condition and accurate PρT data in supercritical region. As a standard example, SAXS measurements have been performed for supercritical CO2, which is a suitable sample satisfying the condition for both experiment and analysis. The measurements were carried out along four isothermal conditions at reduced temperature of Tr = T/Tc = 1.020, 1.022, 1.043 and 1.064. Comparing the experimental density fluctuation with calculated one from the most reliable equation of state, the differences are within 8% at most.  相似文献   

14.
The metal–substrate and metal–metal interactions (MSI, MMI) represent important effects determining the properties of supported catalysts, gas sensors and gettering alloys. We investigated the MSI and MMI effects by the X-ray photoelectron spectroscopy (XPS) and temperature programmed desorption (TPD) in the case of Pd films deposited on Al2O3 and Al substrates. The study shows that the particle-size dependent metal–substrate interaction plays an important role in CO–Pd chemisorption, namely, in the case of “aluminium rich” Pd–aluminium oxide interface. CO chemisorption exhibits a low-temperature desorption feature at 360 K characteristic for Pd–Al and very small Pd particles. The MSI is explained by the formation of a Pd–Al intermetallic interface exhibiting a strong bimetallic Pd–Al interaction.  相似文献   

15.
The structure of the complex [Ni(hmt)(NCS)2(H2O)2]n, assembled by hexamethylenetetramine (hmt) and octahedral Ni(II), is reported. Crystal data: Fw 351.07, a=9.885(10) Å, b=12.06(1) Å, c=12.505(8) Å, β=114.41(4)°, V=1357(1) Å3, Z=4, space group=C2/c, T=173 K, λ(MoK)=0.71070 Å, ρcalc=1.718 gcm−1, μ=17.44 cm−1, R=0.099, Rw=0.145. The tetrahedral assembling template effect of the hmt molecule is completed by two coordination bonds and two hydrogen interactions. The UV–vis absorption spectrum of this complex [Ni(hmt)(NCS)2(H2O)2]n with a two-dimensional network is determined in the range of 5000–35000 cm−1 at room temperature. The observed spectrum is discussed and explained perfectly by the scaling radial theory proposed by us. The two-dimensional structure has no apparent effects on the d–d transitions of the central Ni(II) ion. The IR spectrum and the GT curve of the complex were also measured and clearly reflect its structural properties.  相似文献   

16.
The aim of the present investigation was to compare the in vitro bacterial retention on saliva-coated implant materials (pure titanium grade 2 (cp-Ti) and a titanium alloy (Ti–6Al–4V) surfaces), presenting similar surface roughness, and to assess the influence of physico-chemical surface properties of bacterial strain and implant materials on in vitro bacterial adherence. Two bacterial strains (one hydrophilic strain and one hydrophobic strain) were used and the following were evaluated: bacterial cell adherence, SFE values as well as the Lifshitz-van-der Waals, the Lewis acid base components of SFE, the interfacial free energy and the non-dispersive interactions according to two complementary contact angle measurement methods: the sessile drop method and the captive bubble method.

Our results showed similar patterns of adherent bacterial cells on saliva-coated cp-Ti and saliva-coated Ti–6Al–4V. These findings could suggest that bacterial colonization (i.e. plaque formation) is similar on saliva-coated cp-Ti and Ti–6Al–4V surfaces and indicate that both materials could be suitable for use as transgingival abutment or healing implant components. The same physico-chemical properties exhibited by saliva-coated cp-Ti and TA6V, as shown by the sessile drop method and the captive bubble method, could explain this similar bacterial colonisation. Therefore, higher values of total surface free energy of saliva-coated cp-Ti and saliva-coated TA6V samples (γSV ≈65 mJ/m2) were reported using the captive bubble method indicating a less hydrophobic character of these surfaces than with the sessile drop method (γS ≈44.50 mJ/m2) and consequently possible differences in oral bacterial retention according the theory described by Absolom et al.

The number of adherent hydrophobic S. sanguinis cells was two-fold higher than that of hydrophilic S. constellatus cells. Our results confirm that physico-chemical surface properties of oral bacterial strains play a role in bacterial retention to implant materials in the presence of adsorbed salivary proteins.  相似文献   


17.
Synthesis, structure, spectroscopy and thermal properties of complex [Co(NCS)2(hmt)2(H2O)2][Co(NCS)2(H2O)4] (H2O) (I), assembled by hexamethylenetetramine and octahedral Co(II) metal ions, are reported. Crystal data for I: Fw 387.34, a=9.020(8), b=12.887(9), c=7.95(1) Å, =96.73(4), β=115.36(5), γ=94.16(4)°, V=820(1) Å3, Z=2, space group=P−1, T=173 K, λ(Mo-K)=0.71070 Å, ρcalc=1.718567 g cm−3, μ=17.44 cm−1, R=0.088, Rw=0.148. An interesting two-dimensional network is assembled via hydrogen bonds through coordinated and free water molecules. The d–d transition energy levels of Co(II) ion are determined by UV–vis spectroscopy and calculated by ligand field theory. The calculated results agree well with experiment ones.  相似文献   

18.
Segregation phenomena of Pd–Pt bimetallic clusters with icosahedral and decahedral structures are investigated by using Monte Carlo method based on the second-moment approximation of the tight-binding (TB-SMA) potentials. The simulation results indicate that the Pd atoms generally lie on the surface of the smaller clusters. The three-shell onion-like structures are observed in 55-atom Pd–Pt bimetallic clusters, in which a single Pd atom is located in the center, and the Pt atoms are in the middle shell, while the Pd atoms are enriched on the surface. With the increase of Pd mole fraction in 55-atom Pd–Pt bimetallic clusters, the Pd atoms occupy the vertices of clusters first, then edge and center sites, and finally the interior shell. It is noticed that some decahedral structures can be transformed into the icosahedron-like structure at 300 and 500 K. Comparisons are made with previous experiments and theoretical studies of Pd–Pt bimetallic clusters.  相似文献   

19.
The routine measurement of full hemispherical photoemission intensity maps gives us the possibility for the combined investigation of structural and electronic phenomena at surfaces. As an example the growth of ultrathin films of Co on Cu(111) is studied as a function of film thickness. While X-ray photoelectron diffraction (XPD) shows the early appearance of stacking faults as a precursor of the hcp structure, Fermi surface maps reveal the very fast evolution of the Co Fermi surface that can be compared to measurements on a clean Co(0001) crystal. For the system O/Rh(111), XPD brings up important structural clues, relating changes in surface reactivity to small amounts of subsurface oxygen, which forces adjacent oxygen atoms to occupy new and more reactive adsorption sites. In the course of this last study we observed for the first time the weak backscattering signals in the angular pattern of adsorbate emission. These cone-like features are extremely sensitive to the adsorbate–substrate bond length.  相似文献   

20.
The molecular structure and conformational properties of O=C(N=S(O)F2)2 (carbonylbisimidosulfuryl fluoride) were determined by gas electron diffraction (GED) and quantumchemical calculations (HF/3-21G* and B3LYP/6-31G*). The analysis of the GED intensities resulted in a mixture of 76(12)% synsyn and 24(12)% synanti conformer (ΔH0=H0(synanti)−H0(synsyn)=1.11(32) kcal mol−1) which is in agreement with the interpretation of the IR spectra (68(5)% synsyn and 32(5)% synanti, ΔH0=0.87(11) kcal mol−1). syn and anti describe the orientation of the S=N bonds relative to the C=O bond. In both conformers the S=O bonds of the two N=S(O)F2 groups are trans to the C–N bonds. According to the theoretical calculations, structures with cis orientation of an S=O bond with respect to a C–N bond do not correspond to minima on the energy hyperface. The HF/3-21G* approximation predicts preference of the synanti structure (ΔE=−0.11 kcal mol−1) and the B3LYP/6-31G* method results in an energy difference (ΔE=1.85 kcal mol−1) which is slightly larger than the experimental values. The following geometric parameters for the O=C(N=S)2 skeleton were derived (ra values with 3σ uncertainties): C=O 1.193 (9) Å, C–N 1.365 (9) Å, S=N 1.466 (5) Å, O=C–N 125.1 (6)° and C–N=S 125.3 (10)°. The geometric parameters are reproduced satisfactorily by the HF/3-21G* approximation, except for the C–N=S angle which is too large by ca. 6°. The B3LYP method predicts all bonds to be too long by 0.02–0.05 Å and the C–N=S angle to be too small by ca. 4°.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号