首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Focusing properties of the cylindrical vector axisymmetric Bessel-modulated Gaussian beam with quadratic radial dependence (QBG beam) in high numerical aperture system is investigated theoretically by vector diffraction theory. Results show that intensity distribution in focal region can be altered considerably by beam parameter μ and polarization angle. Polarization angle may adjust transverse intensity distribution, for instance from one focal spot to one ring shape. While μ alters axial intensity distribution remarkably, focal splitting may occur with tunable focal shift, and real value μ also may induce local intensity minimum. For certain case, with increasing imaginary value μ, transverse focal spot shrinks accompanied with higher full width half maximum of axial intensity distribution.  相似文献   

2.
We have investigated the influence of scatterer size changes on the laser light diffusion, induced by collimated monochromatic laser irradiation, in tissue-like optical phantoms using diffuse-reflectance imaging. For that purpose, three-layer optical phantoms were prepared, in which nano- and microsphere size varied in order to simulate the scattering properties of healthy and cancerous urinary bladder walls. The informative areas of the surface diffuse-reflected light distributions were about 15×18 pixels for the smallest scattering particles of 0.05 μm, about 21×25 pixels for the medium-size particles of 0.53 μm, and about 25×30 pixels for the largest particles of 5.09 μm. The computation of the laser spot areas provided useful information for the analysis of the light distribution with high measurement accuracy of up to 92%. The minimal stability of 78% accuracy was observed for superficial scattering signals on the phantoms with the largest particles. The experimental results showed a good agreement with the results obtained by the Monte Carlo simulations. The presented method shows a good potential to be useful for a tissue-state diagnosis of the urinary bladder.  相似文献   

3.
We describe a high-energy, frequency chirped laser system designed for optical Stark deceleration of cold molecules. This system produces two, pulse amplified beams of up to 700 mJ with flat-top temporal profiles, whose frequency and intensity can be well controlled for durations from 20 ns–10 μs. The two beams are created by amplifying a single, rapidly tunable Nd:YVO4 microchip type laser at 1064 nm, which can be frequency chirped by up to 1 GHz over the duration of the pulse. Intensity modulation induced by relaxation oscillations in the microchip laser during the frequency chirp are virtually eliminated by injection locking a free running semiconductor diode laser before pulsed amplification.  相似文献   

4.
An electric cage-laser micro-turning lathe was realised and applied to contact-free handling and mechanical processing of micro particles. Since particles with diameters of several micrometers cannot be fixed in mechanical chucks, an octode field cage was used to trap and rotate a single particle in a fluid without any mechanical surface contact. A pulsed nitrogen laser of high beam quality focused to about 1 μm in diameter could be adjusted independently of the cage position. The trapping forces (negative dielectrophoresis) acting on a bead of 5 to 15 μm are up to several hundred pN. This and the surrounding fluid damp down the effect of the laser pulses during bead processing. Examples demonstrating the possibilities of this technique are shown. Microsystems with high optical quality were fabricated photolithographically or by laser direct-write chemical vapor deposition (LCVD). Technical and biotechnological applications are discussed. Received: 20 October 1999 / Accepted: 27 October 1999 / Published online: 10 November 1999  相似文献   

5.
Steam Laser Cleaning with a pulsed infrared laser source is investigated. The infrared light is tuned to the absorption maximum of water (λ=2.94 μm, 10 ns), whereas the substrates used are transparent (glass, silicon). Thus a thin liquid water layer condensed on top of the contaminated substrate is rapidly heated. The pressure generated during the subsequent phase explosion generates a cleaning force which exceeds the adhesion of the particles. We examine the cleaning threshold in single shot experiments for particles sized from 1 μm down to 300 nm.  相似文献   

6.
Glass doped with PbS quantum dots is presented as a saturable absorber (SA) for a passive Q-switching of a diode-pumped 1.9 μm Tm:KYW laser. Output pulses with energy of 44 μJ at a repetition rate of 2.5 kHz with an average output power of 110 mW were obtained. The Q-switching conversion efficiency was 33%. The absorption saturation intensity of the glass doped with PbS quantum dots with a mean radius of 5.2 nm at a wavelength of 2 μm was measured to be 1.5 MW/cm2.  相似文献   

7.
The thermal lensing of laser beams in optically transmitting materials is investigated by employing a vector diffraction formalism. The effects of stress and heat flow in the transmitting material are incorporated into an aberration function describing the lensing. The principal physical mechanisms and material properties influencing lensing, and their relative significance, are analyzed for a variety of materials at 10.6 μm and 3–5 μm operation. Various time regimes, in which different material properties are involved, are distinguished. It is demonstrated that stress-induced birefringence plays an important role in the time evolution of the transmitted intensity pattern in ionic materials at IR frequencies.  相似文献   

8.
Several studies have reported laser printers as significant sources of nanosized particles (<0.1 μm). Laser printers are used occupationally in office environments and by consumers in their homes. The current work combines existing epidemiological and toxicological evidence on particle-related health effects, measuring doses as mass, particle number and surface area, to estimate and compare the potential risks in occupational and consumer exposure scenarios related to the use of laser printers. The daily uptake of laser printer particles was estimated based on measured particle size distributions and lung deposition modelling. The obtained daily uptakes (particle mass 0.15–0.44 μg d−1; particle number 1.1–3.1 × 109 d−1) were estimated to correspond to 4–13 (mass) or 12–34 (number) deaths per million persons exposed on the basis of epidemiological risk estimates for ambient particles. These risks are higher than the generally used definition of acceptable risk of 1 × 10−6, but substantially lower than the estimated risks due to ambient particles. Toxicological studies on ambient particles revealed consistent values for lowest observed effect levels (LOELs) which were converted into equivalent daily uptakes using allometric scaling. These LOEL uptakes were by a factor of about 330–1,000 (mass) and 1,000–2,500 (particle surface area) higher than estimated uptakes from printers. This toxicological assessment would indicate no significant health risks due to printer particles. Finally, our study suggests that particle number (not mass) and mass (not surface area) are the most conservative risk metrics for the epidemiological and toxicological risks presented here, respectively.  相似文献   

9.
The dissolution process of sparingly soluble CaCO3 microparticles and how the fractal surface dimension of the particles changes during dissolution is analyzed. The particles and the dissolution process are studied using scanning electron microscopy, X-ray diffraction, nitrogen adsorption, laser diffraction and conductance measurements. Ball milling of the particles is shown to maintain the particle crystallinity, and to introduce an increased fractal surface dimension in the 1–10 μm size range. Dissolution is found to increase the surface dimension of initially smooth particles and to maintain the fractal surface roughness of milled particles. The dissolution process increases the relative number of small particles (50 nm–1 μm) whereas the larger ones decrease in size. The solubility of the milled fractal particles was ∼1.8 times higher than that for the initially smooth ones. The presented findings show that developing methods for increasing the fractal surface roughness of particles should be of interest for improving the solubility of poorly soluble drug candidates.  相似文献   

10.
Laser-induced incandescence has been rapidly developed into a powerful diagnostic technique for measurements of soot in many applications. The incandescence intensity generated by laser-heated soot particles at the measurement location suffers the signal trapping effect caused by absorption and scattering by soot particles present between the measurement location and the detector. The signal trapping effect was numerically investigated in soot measurements using both a 2D LII setup and the corresponding point LII setup at detection wavelengths of 400 and 780 nm in a laminar coflow ethylene/air flame. The radiative properties of aggregated soot particles were calculated using the Rayleigh–Debye–Gans polydisperse fractal aggregate theory. The radiative transfer equation in emitting, absorbing, and scattering media was solved using the discrete-ordinates method. The radiation intensity along an arbitrary direction was obtained using the infinitely small weight technique. The contribution of scattering to signal trapping was found to be negligible in atmospheric laminar diffusion flames. When uncorrected LII intensities are used to determine soot particle temperature and the soot volume fraction, the errors are smaller in 2D LII setup where soot particles are excited by a laser sheet. The simple Beer–Lambert exponential attenuation relationship holds in LII applications to axisymmetric flames as long as the effective extinction coefficient is adequately defined.  相似文献   

11.
We realized laser generation on a Fe2+:ZnTe crystal for first time. The crystal was pumped at room temperature by 40 ns pulses of an Er:YAG laser operating at a wavelength of 2.94 μm in the Q-switching mode. The output energy of the Fe2+:ZnTe laser was 0.18 mJ at a slope efficiency of 2.4% with respect to absorbed pumping energy. We achieved tuning of the Fe2+:ZnTe laser generation wavelength within the range of 4.35–5.45 μm using a prism-dispersion cavity.  相似文献   

12.
The results of measurement of fluctuations of brightness temperature T in the region of exposure to laser radiation of a 3 mm-thick steel plate are presented. The local luminosity along the cut-front was measured using two-color multichannel pyrometer. Cutting trials were carried out with CO2 laser (10.6 μm, 1200 W) and fiber laser (1.07 μm, 1800 W). Special attention was given to the frequency range of temperature fluctuations above frequency of melt overflight, aiming on on-line monitoring applications. It is shown that local fluctuations of T are related to local melt’s surface deformations due to unequal radiation absorption; thus the noise spectrum of T fluctuations reflects turbulent surface deformation, caused by gas jet and capillary waves. It is also shown that the thermo-capillary effect with capillary-wave turbulence generation can be observed in case of exposure to 10.6 μm radiation with a laser intensity of about 1 MW/cm2. The power law of “−7/6” describes the spectrum of the T fluctuation variance in this case of anomalous absorption of radiation, and the standard deviation of T is in excess of 10 K for a frequency of 14 kHz. There is no such effect in case of fiber-laser radiation applying, and the source of the capillary waves is only forced low-frequency deformations of the melt surface. The standard deviation of T does not exceed 3 K on the frequency of 14 kHz, and above, and a power law of the spectrum fluctuation is described by about “−3” in that range.  相似文献   

13.
Liu  L.  Loh  N. H.  Tay  B. Y.  Tor  S. B.  Yin  H. Q.  Qu  X. H. 《Applied Physics A: Materials Science & Processing》2011,103(4):1145-1151
Micro powder injection molding (μPIM) has been developed as a potential technique for mass production of microcomponents in microsystems due to its shaping complexity at low cost, in which sintering is a crucial step to dictate the final properties of the microcomponents. In this paper, final-stage sintering behavior of 316L stainless steel microsize structures prepared by μPIM, φ100 μm and φ60 μm, respectively, was studied. The effect of size reduction in the regime of micrometers on the density of various microsize structures was investigated. Sintering kinetics of the microsize structures of φ100 μm and φ60 μm were studied based on particle level sintering models. It is found that the microsize structures of φ60 μm had higher density than the microsize structures of φ100 μm given the same sintering condition. The results indicate that size reduction in the regime of micrometers facilitated densification of microsize structures. The grain growth mechanism of microsize structures varied with size. Whereas the grain growth of the microsize structures of φ100 μm is governed by surface-diffusion-controlled pore drag, the grain growth of the microsize structures of φ60 μm is controlled by boundary diffusion. During densification, the microsize structures, φ100 μm and φ60 μm, are both controlled by lattice diffusion. The corresponding activation energies are reported in the paper.  相似文献   

14.
A dynamical model of oxide-confined Vertical-Cavity Surface-Emitting Lasers (VCSELs) with two-dimensional photonic crystals (PCs) incorporated within them so called PC-VCSELs is presented and used to optimise designs for high-power single-mode operation. Three PC-VCSEL designs are considered: (I) with holes in the top DBRs, (II) with PC holes situated between their DBRs and (III) with PC holes etched through the entire VCSEL. A simulated design for a PC-VCSEL of type (I) with holes of d = 2 μm diameter, a = 4 μm lattice constant (d/a = 0.5) and 2.2 μm depth was found to improve the single mode behaviour but not enough to establish single mode behaviour for large apertures. The modulation behaviour was not degraded by the PC. Simulations of type (II) and (III) PC-VCSELs, with the same parameters, have shown multimode operation and degraded modulation properties. Simulations of PC-VCSELs of type (III) with holes of d = 0.2 μm diameter and a = 0.4 μm lattice constant (d/a = 0.5) have shown improved modulation properties and enhanced single mode power for small apertures. In simulation, PC-VCSELs incorporating multiple PC-defects have shown order of magnitude increases in the single mode output power. However, the modulation properties of these VCSELs show degradation due to gain saturation and hopping of the optical modes localized within the PC defects.  相似文献   

15.
Micro machining of a polyimide film with ultra-short pulsed laser was demonstrated. A through-hole with a diameter of less than 10 μm could be produced by optimizing the pulse duration, repetition rate, and number of shots. Thermal damage around the through-hole can be made negligibly small when the pulse duration was shorter than 140 fs. We also found that the minimum shot number needed for the creation of a through-hole becomes smaller as the repetition rate of laser shot increases. On the basis of the optimum irradiation condition, we demonstrated laser cutting of a polyimide film without thermal damage and copper filling in through-holes with diameters of 9 μm by a plating process.  相似文献   

16.
We present observations of sub-micron- to micron-sized particles generated by high fluence (≈2 J/cm2) 248-nm laser ablation of pressed polytetrafluorethylene (PTFE) targets in air at atmospheric pressure. The original target material was hydrostatically compressed ≈7 μm PTFE powder, sintered at 275 °C. Collected ejecta due to laser irradiation consists of four basic particle morphologies ranging from small particles 50–200 nm in diameter to larger particles ≈10 μm in diameter. Many particles formed in air carry electric charge. Using charged electrodes we are able to collect charged particles to determine relative numbers of ± charge. We observe roughly equal numbers of positively and negatively charged particles except for the largest particles which were predominantly negative. For a range of particle sizes we are able to measure the sign and magnitude of this charge with a Millikan-oil-drop technique and determine surface charge densities. The implications of these observations with respect to pulsed laser deposition of PTFE thin films and coatings are discussed. Received: 15 January 1999 / Accepted: 18 January 1999 / Published online: 7 April 1999  相似文献   

17.
A continuous aerosol process has been studied for producing nanoparticles of oxides that were decorated with smaller metallic nanoparticles and are free of organic stabilizers. To produce the oxide carrier nanoparticles, an aerosol of 3–6 μm oxide particles was ablated using a pulsed excimer laser. The resulting oxide nanoparticle aerosol was then mixed with 1.5–2.0 μm metallic particles and this mixed aerosol was exposed to the laser for a second time. The metallic micron-sized particles were ablated during this second exposure, and the resulting nanoparticles deposited on the surface of the oxide nanoparticles producing an aerosol of 10–60 nm oxide nanoparticles that were decorated with smaller 1–5 nm metallic nanoparticles. The metal and oxide nanoparticle sizes were varied by changing the laser fluence and gas type in the aerosol. The flexibility of this approach was demonstrated by producing metal-decorated oxide nanoparticles using two oxides, SiO2 and TiO2, and two metals, Au and Ag.  相似文献   

18.
瑞利粒子在贝塞尔光束中的横向受力   总被引:1,自引:1,他引:0       下载免费PDF全文
 为寻找捕获瑞利粒子的最佳光场,利用电磁模型推导了贝塞尔光束捕获粒子的最小半径的表达式,并数值计算了瑞利粒子在贝塞尔光束和高斯光束中所受的横向力和势阱的深度。结果表明:当激光功率为4 W时,贝塞尔光束仅能在光轴处稳定地捕获瑞利粒子;当激光功率达到6 W时,贝塞尔光束能够在光轴和次极大位置捕获瑞利粒子。在相同的激光参数条件下,高斯光束无法克服布朗运动的影响稳定地捕获瑞利粒子,贝塞尔光束更有利于捕获瑞利粒子。  相似文献   

19.
We report on the fabrication of hollow optical waveguides in fused silica using femtosecond laser micromachining. We show that in such hollow waveguides, high-intensity femtosecond laser beams can be guided with low optical loss. Our technique, which was established earlier for fabrication of optofluidic structures in glass, can ensure a high smoothness at the inner surfaces of the hollow waveguides and provide the unique capability of fabrication of hollow waveguides with complex geometries and configurations. A transmission of ∼90% at 633 nm wavelength is obtained for a 62-mm-long hollow waveguide with an inner diameter of ∼250 μm. In addition, nonlinear propagation of femtosecond laser pulses in the hollow waveguide is demonstrated, showing that the spectral bandwidth of the femtosecond pulses can be broadened from ∼27.2 to ∼55.7 nm.  相似文献   

20.
In this paper a new approach for simultaneous 2D velocity and temperature measurements using phosphoric particles is presented. The phosphoric particles respond to the temperature changes in the flow while acting as tracers for velocity mapping. The temperature sensitive particles were seeded into a heated flow and were excited by a pulsed UV laser. The subsequent red shifted emission was detected and analyzed to infer temperature using calibration procedures for lifetime and emission spectra against temperature. The diameter of the temperature sensitive particles, usually in the range of 1–10 μm, makes them useful for velocity measurements using particle image velocimetry (PIV). As such, simultaneous measurement of temperature and flow velocity of a gaseous flow were performed and presented. PACS  42.62.-b; 47.80.Cb; 47.80.Fg  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号