首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 203 毫秒
1.
采用羟基铁离子柱撑Na-Mont制备了铁柱撑黏土催化剂(Fe-PILC),铁物种作为柱撑成分,同时充当活性组分,研究其在贫燃条件下催化丙烯选择性还原NO的特性。通过XRD、N_2吸附-脱附、H_2-TPR、UV-vis、Py-FTIR等方法对催化剂进行物理化学性质表征,进一步研究其反应机理。研究表明,1.0Fe-PILC在450-600℃时NO的转化率超过98%,N_2的选择性可达97%以上,且抗水蒸气和SO_2的能力较强。XRD和N_2吸附-脱附研究表明,Fe-PILC中铁物种柱撑进入Na-Mont层间,使催化剂的比表面积和孔容增大。H_2-TPR研究表明,Fe-PILC在400℃左右还原能力较强,主要体现为Fe~(3+)→Fe~(2+)的还原。UVvis研究表明,Fe-PILC的脱硝活性与铁氧低聚物种FexOy呈正相关。Py-FTIR研究表明,Fe-PILC表面同时含有Lewis酸和Br■nsted酸性位,Lew is酸性位是C_3H_6与NO进行催化反应的主要活性中心。  相似文献   

2.
为解决柱撑粘土(PILC)系催化剂在CH4作还原剂条件下选择性催化还原(SCR: selective catalytic reduction)NO效率较低、抗水蒸气、抗SO2毒化能力较差等问题,提出了一种较为新颖的催化剂制备方法。利用TiCl4作为Ti源对Na化蒙脱土进行柱撑得到Ti-PILC,之后以浸渍法和离子交换法分别负载活性金属Ga和Fe得到xGa/Ti-PILC系列和yFe-14Ga/Ti-PILC系列催化剂。采用多种方法对催化剂的基础物理化学性质进行了表征,并在固定床微反应器上进行了CH4-SCR脱硝实验。结果表明, 14Ga/Ti-PILC于500℃达到了77%的NO还原率,引入Fe后,催化剂的抗水抗硫性能得到了提高,如10Fe-14Ga/Ti-PILC,在含5%水蒸气和200ppmSO2条件下,NO脱除效率的下降不超过10%和8%。对催化剂进行N2吸附-脱附、H2-TPR、XRD、XPS、UV-vis、Py-FTIR等相关表征及分析后发现,Ga在Ti-PILC上分散度较高的情况下能有效提升催化剂对NO的还原性能;通过引入适量的Fe增加14Ga/Ti-PILC的孔径从而可较为有效的降低水蒸气和SO2对催化剂脱硝活性的负面影响;催化剂表面存在的Lewis酸的含量与催化剂的脱硝活性呈正相关关系。  相似文献   

3.
采用羟基铁离子柱撑Na-Mont制备出1.0Fe-PILC,通过超声浸渍法合成不同铜负载量的nCu-Fe-PILC,并测试了其在富氧条件下催化C_3H_6选择性催化还原NO的性能。通过N_2吸附脱附、XRD、UV-Vis、H_2-TPR、Py-FTIR等技术手段表征催化剂的微观结构和物化性质,进一步解释其催化反应机理。结果表明,Cu的引入提高了1.0Fe-PILC的中低温活性和抗水硫能力。其中9Cu-Fe-PILC在300℃时NO转化率可达69.8%以上,400℃后NO转化率保持在99%以上且水硫影响较小。XRD、N_2吸附脱附结果表明,催化剂的SCR活性与所负载的活性组分和催化剂的吸附能力有关。UV-Vis结果表明,9Cu-Fe-PILC具有较强的中低温活性,与其含有较多的游离态Cu~(2+)有关。H_2-TPR结果表明,与1.0Fe-PILC相比,经Cu修饰的nCu-Fe-PILC获得了中低温还原能力。Py-FTIR结果表明,nCu-Fe-PILC表面同时含有Lewis酸和Br?nsted酸,Lewis酸是影响催化剂SCR活性的主要因素。  相似文献   

4.
为提高低温段(300℃)铝柱撑蒙脱土负载铁基催化剂的脱硝效率,采用银离子对其进行修饰。通过超声浸渍法合成银-铁双金属催化剂,并于固定床反应器中评价催化剂性能。结果表明,Ag的引入显著改善了Fe/Al-PILC催化剂的低温催化活性。在250℃时,Ag-Fe/Al-PILC催化剂的NO转化率达到60%以上,高于Fe/Al-PILC催化剂20%的NO的转化率,其中,2.1Ag-Fe/Al-PILC在250℃时NO转化率达到82%,N_2选择性达到100%。而且,引入银离子后的双金属催化剂保持了铁基催化剂较好的抗H_2O和SO_2性能。通过多种技术探究催化剂的微观结构和物理化学性质。根据N_2吸附-脱附测试结果表明,双金属催化剂形成了稳定的整体结构,并具有较大的内比表面积。同时,XRD和UV-vis表征结果显示,在催化剂表面形成的银-铁固溶体、Ag~+和Ag_n~(δ+)物种是影响其低温活性的关键因素。Ag-Fe/Al-PILC的低温活性与形成的银-铁固溶体有关,同时在催化剂表面形成的Ag~+和Ag_n~(δ+)物种是影响其低温活性的关键因素。XPS结果表明,Ag和Fe之间存在电子转移,形成了双金属协同作用,改变了催化剂表面的银、铁成分含量及其价态。H_2-TPR结果表明,Ag促使Fe/Al-PILC还原特征峰出现在低温区,提高了其低温还原性能。表面酸性的Py-FTIR分析结果表明,Ag-Fe/Al-PILC催化剂同时存在Lewis酸和Br?nsted酸,且Ag提高了Br?nsted酸的稳定性。  相似文献   

5.
采用浸渍法制备了负载于铝柱撑黏土的铁基催化剂(Fe/Al-PILC),在固定床反应器上测试其催化C3H6选择性还原NO的性能。通过N2吸附-脱附、X射线衍射(XRD)、H2的程序升温还原(H2-TPR)、紫外可见光谱(Uv-vis)、吡啶吸附红外光谱(Py-FTIR)等手段对催化剂的物理化学性质进行表征。结果表明,9Fe/Al-PILC在400-550℃能够还原98%以上的NO,而且SO2和水蒸气对其催化性能的影响很小。XRD、N2吸附-脱附表征结果表明,Fe/Al-PILC催化剂中铁氧化物高度分散在载体表面,催化剂有较大的比表面积和孔容。H2-TPR结果表明,催化剂的活性主要由Fe_2O_3物相的还原性能决定。Uv-vis结果表明,催化剂的活性与铁氧低聚物种FexOy呈正相关性。Py-FTIR结果表明,催化剂表面同时存在Lewis酸和Brnsted酸,L酸性位是NO和C3H6反应的主要催化活性中心。  相似文献   

6.
为提高Fe/Al-PILC催化剂的SCR脱硝的低温活性,采用Cu对Fe/Al-PILC催化剂进行改性。采用超声浸渍法合成系列xCu-Fe/Al-PILC催化剂,通过XRD、N2吸附-脱附、H2-TPR、UV-vis、XPS、Py-FTIR等系列技术手段进行表征。在固定床微反应器上进行C3H6的选择性催化还原NO的实验。结果表明,经过铜改性后的xCu-Fe/Al-PILC催化剂有效解决了Fe/Al-PILC催化剂低温SCR活性不足的问题,同时提高了中高温活性。催化剂在200-500℃能够实现80%以上脱硝效率,其中,0.13Cu-Fe/Al-PILC在250-500℃实现了90%以上NO转化率,并在250℃达到最高脱硝效率93%。XRD、N2吸附-脱附结果表明,经过铜改性的催化剂可以提供更多反应活性位,提高反应速率。H2-TPR结果表明,掺杂铜使催化剂获得低温还原能力,同时增强了中高温还原能力。UV-vis、XPS结果表明,铜掺杂不仅使铁获得更高氧化态,同时产生了更多低温活性物质孤立Fe3+。Py-FTIR结果表明,催化剂表面同时存在Lewis酸和Brønsted酸,Lewis酸是SCR反应活性中心。  相似文献   

7.
以蜂窝状陶瓷为载体,采用溶胶凝胶法和浸渍法制备了不同Fe/Ag负载量的Fe-Ag/Al_2O_3催化剂。以C_3H_6为还原剂,在模拟烟气条件下和200-700℃范围内,程序控温的陶瓷管流动反应器上进行了催化还原NO的性能评估。结果表明,7.2Fe/1.9Ag/20Al_2O_3/CM在500和550℃时催化C_3H_6还原NO的脱硝效率分别超过90%和达到100%。铁离子能有效地提高Ag/20Al_2O_3/CM催化剂抵抗烟气中的SO_2和H_2O的能力。结果表明,当烟气中含有体积分数为0.02%的SO2和8%的H_2O时,在500℃时7.2Fe/1.9Ag/20Al_2O_3/CM催化C_3H_6还原NO的脱硝效率不受影响,在6 h的连续实验中保持90%的脱硝效率而没有下降。而未经铁离子修饰的2Ag/20Al_2O_3/CM的催化活性则受烟气中的SO2和H_2O影响很大,0.02%的SO2和8%的H_2O分别使2Ag/20Al_2O_3/CM在500℃时催化C_3H_6还原NO的脱硝效率迅速从70%分别下降至46%和25%。XRD和SEM表征结果表明,经铁离子修饰后的7.2Fe/1.9Ag/20Al_2O_3/CM催化剂中,形成了AgFeO_2以及Fe~(3+),催化剂表面变得疏松多孔,形成以Fe_3O_4为主的针状和片状晶体。H_2-TPR结果表明,7.2Fe/1.9Ag/20Al_2O_3/CM比Ag/20Al_2O_3/CM在更宽的温度范围内具有更好的还原特性。吡啶吸附红外光谱(Py-FTIR)实验结果显示,Fe增加了催化剂表面的Lewis酸性位。  相似文献   

8.
采用水热法制备了以对苯二甲酸和对氨基苯甲酸为配体的双配体Fe基MOFs材料(MIL-88B(Fe)),在浸渍一定量Cu物种后经氮气气氛焙烧得到活性组分均匀分散的CuFe基催化剂。通过改变2种配体的比例调控催化剂表面Fe活性物种的价态分布,并考察了其用于固定床反应器上CO_2加氢制C_(2+)醇的催化性能,结合X射线衍射(XRD)、H_2程序升温还原(H2-TPR)、N_2吸附-脱附、扫描电子显微镜(SEM)、X射线光电子能谱(XPS)等表征结果发现,对苯二甲酸与对氨基苯甲酸物质的量之比为5∶2时,催化剂表面低价态铁原子占比为71.27%,催化剂展现最优的催化活性,CO_2转化率为8.80%,总醇选择性为31.52%,其中C_(2+)醇的物质的量分数达到94.70%。  相似文献   

9.
氯掺杂二氧化钛柱撑蒙脱土的合成及光催化性能   总被引:1,自引:0,他引:1  
采用溶胶 凝胶法制备了氯掺杂二氧化钛柱撑蒙脱土催化剂。 利用XRD、SEM、UV-Vis-DRS、光致发光谱(PLS)、N2吸附-脱附和XPS等测试技术对其进行了表征。 结果表明,该催化剂具有明显的锐钛矿相结构,且氯掺杂与二氧化钛柱撑后,蒙脱土的层间结构没有完全被破坏;氯掺杂拓宽了其光吸收范围,在可见光区吸收增强;其带隙能由3.19 eV减小至3.14 eV;氯以阴离子形式存在于TiO2晶格中。 对硝基苯胺降解实验表明,氯掺杂可显著提高二氧化钛柱撑蒙脱土的光催化活性,氯掺杂量为6%(与钛的摩尔比)的催化剂具有较好光催化活性。  相似文献   

10.
采用一步法水热合成不同Cu/Al比的Cu-SAPO-34催化剂,并对其丙烯选择性催化还原NO(C3H6-SCR)性能进行了研究。通过N2吸附-脱附、X射线衍射(XRD)、X射线光电子能谱(XPS)、程序升温还原(H2-TPR)和原位漫反射傅里叶变换红外光谱(In situ DRIFTS)等研究手段对催化剂进行表征,考察Cu-SAPO-34中Cu物种含量对催化剂的物理化学性质和反应活性的影响。结果表明,当铜负载量为2.76%~4.12%(w/w)时,Cu-SAPO-34催化剂在富氧条件下300~400℃内表现出非常有吸引力的C_3H_6-SCR活性,可实现~100%的脱硝效率和~100%的N_2选择性。原位红外光谱研究表明,Cu-SAPO-34分子筛骨架上孤立的Cu~(2+)离子是NO吸附和活化形成NO_2~-/NO_3~-中间物种的主要活性位,并通过C_3H_6-SCR反应过程中Cu~(2+)/Cu~+氧化还原循环来实现Cu~(2+)离子的持续供给。  相似文献   

11.
采用溶胶-凝胶法制备了不同含量钨修饰的MnOx-Fe2O3催化剂,重点考察WO3的引入对NH3-SCR反应中N2选择性的影响,通过XRD、BET、XPS、H2-TPR、Raman和In situ DRIFTS等手段对催化剂的物理化学性质进行表征。结果表明,钨的引入显著提高NH3-SCR的N2选择性,当WO3质量分数为15%时,具有最佳的NH3-SCR催化性能,且在50-250℃条件下N2O浓度始终低于0.003%。这主要是由于适量WO3的引入,导致催化剂物相由α-Fe2O3向γ-Fe2O3转变,并与锰相互作用形成新的无定型MnWO4,获得较大的比表面积;使得Mn4+/(Mn3++Mn4+)比例减少但Fe2+及表面化学吸附氧(Oα)含量增加,从而降低催化剂氧化性;增强催化剂表面的Lewis酸性位点的含量及强度,增强NH3的吸附,促进了SCR反应,同时抑制了NO2深度氧化形成硝酸盐物种,降低硝酸盐物种还原产生的副产物N2O含量,从而显著提高WO3-MnOx-Fe2O3催化剂在NH3-SCR中的N2选择性。  相似文献   

12.
载体物化性质对锰铈催化剂NH3-SCR脱硝性能的影响   总被引:1,自引:0,他引:1  
选取TiO2、SAPO-34、Al2O3三种常用载体,通过浸渍法以Mn-Ce-O为活性组分制备了负载型MnCeOx脱硝催化剂。采用XRD、BET、H2-TPR、XPS、Py-FTIR等手段对催化剂的固相结构、比表面积、还原性能、表面元素及酸量进行表征分析。结果表明,MnCeOx/SAPO-34催化剂具有最大的比表面积(439.87 m2/g),酸量适中,还原性能最差;MnCeOx/Al2O3催化剂中Mn4+、Ce3+所占比例较高,但酸性最弱;MnCeOx/TiO2催化剂还原性能最优,表面Mn、Ce元素浓度最高,并具有大量Lewis酸性位。通过气固相催化反应装置对催化剂性能进行了NH3-SCR脱硝评价,结果表明,MnCeOx/TiO2催化剂具有较好的脱硝性能,反应温度为280 ℃时,NO转化率达100%(空速为42000 h-1);与催化剂物化性质对比分析,催化剂的氧化还原能力和Lewis酸性位对其脱硝性能至关重要。  相似文献   

13.
用CaO作为改性助剂,采用并流共沉淀法制备了CuO∶ZnO∶ZrO_2为5∶4∶1(物质的量比),CaO添加量为0、1%、2%、4%、8%、16%(摩尔分数)的六组催化剂。用X射线衍射(XRD)、微商热重(TG-DTG)、傅里叶红外(FT-IR)、N2吸附脱附(BET)、X射线光电子能谱(XPS)、氢气程序升温还原(H_2-TPR)、CO_2程序升温脱附(CO_2-TPD)、NH_3程序升温脱附(NH_3-TPD)对催化剂进行了表征。用自制固定床评价了催化剂活性。结果表明,添加CaO后,催化剂路易斯酸性和表面碱性增强;催化剂母体中高温碳酸盐含量增加,热稳定性增强,CuO颗粒粒径变小,Cu-Zn协同作用增强,Cu比表面积增大,分散性变好。催化剂活性受到表面酸碱性、铜比表面积、Cu-Zn协同作用和铜分散性共同影响。当CaO为2%时,铜比表面积为79.3 m2/g、铜分散度为34.8%、CO_2转化率为24.55%、甲醇选择性为19.01%、甲醇收率为0.044 g/(gcat·h),催化剂活性最好。过量CaO占据催化剂孔道和覆盖表面活性位,使催化剂路易斯酸性和表面碱性过强,CuO与H_2有效接触减少,CO_2难以脱附,催化活性下降。因此,适量CaO(2%)添加可促进CO_2加氢反应合成甲醇。  相似文献   

14.
用水热法和共沉淀法分别制备了Nd-Co3O4催化剂,催化分解N2O。其中,水热法制备的Nd-Co3O4催化活性较高。在不同组成的Nd-Co3O4中,优化出了较高活性的0.01Nd-Co3O4催化剂,在其表面浸渍K2CO3溶液制备K改性催化剂(K/Nd-Co3O4)。用X射线衍射(XRD)、N2物理吸附、扫描电镜(SEM)、X射线光电子谱(XPS)、程序升温还原(H2-TPR)、O2程序升温脱附(O2-TPD)等技术表征催化剂结构。结果表明,Nd-Co3O4和K改性催化剂均为尖晶石结构;K改性弱化了催化剂表面Co-O键,有利于表面氧的脱除,提高了催化剂活性。有氧有水气氛350 ℃连续反应40 h,K/Nd-Co3O4催化剂上的N2O分解率超过90%,稳定性较好。  相似文献   

15.
采用柠檬酸盐凝胶法制备出纳米CuO-ZnO-ZrO_2(CZZ)催化剂,应用XPS、BET、XRD、H_2-TPR、H_2-TPD、CO_2-TPD和TG-DTA等检测手段对催化剂及前驱体的结构进行表征。研究了湿凝胶干燥时间和柠檬酸用量对催化剂结构的影响,并与燃烧法制得的催化剂进行对比,考察了不同催化剂CO_2加氢制甲醇的性能。研究表明,延长湿凝胶干燥时间可有效防止催化剂焙烧时发生喷溅,有利于催化剂中各组分的分散,提高催化剂对H_2和CO_2的吸附能力;112℃干燥48h制得的催化剂(CZZ-48h)BET比表面积为43.5m~2/g,高于燃烧法;柠檬酸用量等于化学计量比时催化剂的性能最佳,在240℃、2.6MPa、空速为3600h-1、H_2/CO_2(体积比)为3的条件下甲醇时空收率达109.4g/(kg·h);柠檬酸过量会影响催化剂组分的分散度,并造成分解残留覆盖催化剂表面活性位而不利于CO_2加氢反应。  相似文献   

16.
利用凝胶溶胶法和浸渍法制备了Ce-Fe/Al2O3/cordierite催化剂,实验研究了其催化丙烷选择性还原NO的特性。结果表明,当铈的负载量从1%增加至5%时,Ce-Fe/Al2O3/cordierite的C3H8-SCR性能先增强后减弱,3.5Ce-Fe/Al2O3/cordierite具有最佳的脱硝性能,在有氧条件下,600℃时可实现96.5%的脱硝效率。Ce的加入能够提升Fe/Al2O3/cordierite催化剂的抗硫性能。烟气中通入0.02%的SO2后,3.5Ce-Fe/Al2O3/cordierite催化丙烷还原NO的转化率始终维持在93%,而没有经过Ce修饰的Fe/Al2O3/cordierite的NO转化率从88%下降为80%左右。利用XRD、N2吸附-脱附、SEM、H2-TPR、吡啶吸附红外光谱等手段研究了催化剂的物理化学性质。结果表明,加入助剂铈能与Fe形成了固溶体,增加催化剂表面Lewis酸浓度和氧化还原能力,从而提高了催化丙烷还原NO的性能。过多的铈引入会减少Fe2O3结晶体的形成,不利于在C3H8-SCR反应中形成NO2/NO3-物种,从而导致NO还原效率下降。  相似文献   

17.
采用自发沉积法、共沉淀法及浸渍法制备MnO_x/TiO_2催化剂,通过XRD、TEM、N2吸附-脱附、XPS、H_2-TPR、NH_3-TPD等一系列表征手段研究MnO_x/TiO_2催化剂的结构与性质,并考察MnO_x/TiO_2催化剂低温NH_3-SCR性能。结果表明,自发沉积法制备的MnO_x/Ti O2(s)催化剂具有完全非晶态结构,Mn和Ti之间存在强相互作用,较共沉淀法制备的MnO_x/TiO_2(c)及浸渍法制备的MnO_x/Ti O2(i)表现出更强的氧化还原能力。MnO_x/TiO_2(s)具有较高的比表面积、较多的表面酸量,有利于NH_3的吸附与活化。且表面高浓度的Mn4+离子及吸附氧,有利于将NO氧化为NO2,促进发生"fast-SCR"反应,进而使其表现出优异的低温脱硝性能。MnO_x/TiO_2(s)催化剂在150℃时NO的转化率高达92.8%,在150-350℃NO的转化率保持在90%以上,此外其还具备较强的抗H_2O和SO_2毒化能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号