首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
通过水平管式气化炉和化学吸收法,对比研究了矿化垃圾热解半焦(ARC)和常规垃圾热解半焦(NRC)在水蒸气和CO2气化过程中腐蚀性气体(HCl和H2S)的析出特性,考察了气化温度、气化介质类型和流量对腐蚀性气体析出特性的影响。当气化温度升至950℃,ARC在水蒸气气化过程中的碳气化率、HCl和H2S产率分别为66.1%、100%和74.9%,而其在CO2气化过程中的碳气化率、HCl和H2S产率分别为77.8%、100%和2.9%;NRC在水蒸气气化过程中的碳气化率、HCl和H2S产率分别为98.8%、100%和53.7%,而其在CO2气化过程中的碳气化率、HCl和H2S产率分别为100%、96.2%和10.3%。以NRC为原料,考察了水蒸气和CO2流量对其HCl和CO2析出特性的影响。NRC的HCl和H2S产率均随水蒸气流量增加而增加,但当水碳比大于等于3.3时,其促进作用不再明显。NRC的HCl产率随CO2流量的增加而增加,而H2S产率随CO2流量的增加而减小。  相似文献   

2.
垃圾衍生燃料等温快速热解和燃烧反应特性   总被引:4,自引:4,他引:4  
利用热天平和管式炉对RDF(Refuse Derived Fuel)等温快速热解和燃烧反应特性进行了研究。实验发现,在等温快速升温的条件下,RDF热解和燃烧的反应速率都非常快,从受热开始到反应结束需60 s~80 s;从开始失重到完成反应为20 s。RDF热解和燃烧热重反应曲线非常类似,都只有一个反应失重区;RDF组成对其燃烧和热解反应性有重要影响,含有橡胶的RDF的热解和燃烧反应速率较小。在650 ℃~800 ℃RDF快速热解产物中气、液产物的产率可达80%~90%,而固体产物的产率只有10%~20%,热解气体的热值为20kJ/m3,RDF较适合进行热解处理。  相似文献   

3.
模化城市生活垃圾衍生燃料制备及热解特性的研究   总被引:8,自引:4,他引:8  
为保证城市固体废弃物(MSW)或垃圾衍生燃料(RDF)研究过程中所用样品的典型性和可重复性,首先根据我国城市生活垃圾的典型组成人工配制了垃圾衍生燃料(aRDF),分析了aRDF的组成,采用热重 傅立叶变换红外光谱(TG-FTIR)联用技术研究了aRDF的热解特性,并采用差减微商法计算了热解动力学参数。结果表明,aRDF体现了我国MSW构成的主要特点,且与实际焚烧等过程的垃圾原料更为接近;aRDF在低温热解过程中,氯的释放与芳族化合物的产生处于不同的温度区间,并且缓慢的升温速度加大了HCl和芳族化合物释放的温度区间差异。这为避免高温下HCl对设备的腐蚀、减少甚至消除PCDD/Fs的形成提供了可能。aRDF的热解反应为一级反应,其活化能在64.6 kJ/mol~136kJ/mol的范围内变化。  相似文献   

4.
木质纤维类生活垃圾热解过程矿物质和碳结构的演化规律   总被引:2,自引:0,他引:2  
使用水平管式炉,在不同热解温度(500~1 000 ℃)条件下对废纸屑和樟树叶两种木质纤维类生活垃圾进行了热解实验,分别采用X射线衍射(XRD)和拉曼光谱研究了样品所含矿物质和碳结构随热解温度的变化。结果表明,废纸屑和樟树叶含有的主要矿物分别为方解石和草酸钙,在500 ℃之前草酸钙全部转化为方解石,焦样中的方解石在800 ℃以后逐渐分解并形成生石灰。拉曼光谱对生活垃圾焦的碳结构变化非常敏感,低温热解时生活垃圾的大分子结构发生缩合和解聚,产生了孤立sp2碳原子,导致峰参数D1峰半高宽和峰面积比值ID1/IG逐渐增大;高温热解时晶体sp2碳原子增多,导致D1峰半高宽和ID1/IG逐渐减小。焦样的碳结构有序度随热解温度升高先降低后提高。  相似文献   

5.
利用热重分析仪对城市生活垃圾与煤矸石单独及混合燃烧特性进行了研究,并采用高温管式炉燃烧装置考察了PVC、NaCl及MSW与煤矸石混烧过程中HCl的排放规律。结果表明,在煤矸石中掺烧部分MSW可有效改善煤矸石的燃烧特性,尤其是脱挥发分和着火特性。综合考虑燃烧特性变化,建议MSW掺混比例为20%。PVC与NaCl掺混比较低时,煤矸石可抑制PVC燃烧过程中HCl的析出,会显著促进NaCl中HCl的析出;当掺混比增大时,上述作用逐渐减弱。MSW与煤矸石混烧时,会促进HCl的析出,增大烟气中HCl的浓度。当掺混比为10%时,HCl排放浓度达到56.22 mg/m~3,已超过中国国家标准,必须采取相应脱氯措施。  相似文献   

6.
垃圾衍生燃料流化床燃烧过程中HCl和NOx的排放研究   总被引:2,自引:0,他引:2  
在床总高为4040mm的变截面流化床中试规模装置内,研究垃圾衍生燃料(RDF)在气化和燃烧不同阶段中NOx和HCl的生成特性。含NaCl的垃圾衍生燃料在流化床内燃烧,燃烧低于640℃时,Ca(OH)2的脱氯效果比较好;但随着温度升高,烟气中HCl的体积分数迅速增长,但脱氯效果明显受到CaCl2化学反应平衡的限制。燃烧状况特别是氧的体积分数对NOx的生成影响比较大。含氮量高的RDF燃烧产生NOx的体积分数明显高于低含氮燃料所产生的。  相似文献   

7.
在程序升温热解反应装置上,研究了低氯煤中添加不同氯含量(质量分数0.1%、0.3%、0.5%)的CaCl2对煤热解过程中汞析出规律的影响。实验结果表明,温度是影响汞析出的关键因素;随着氯添加量的增加,Hg2+析出比例呈上升趋势,且汞的最佳析出温度降低,汞的释放率也有所降低;随着热解气氛中O2比例的增加,Hg2+比例也略有增加;较高的升温速率能加快汞的释放,也能提高Hg2+的比例。低氯煤中添加氯化钙能够强化单质汞的氧化。  相似文献   

8.
在程序升温热解反应装置上,研究了低氯煤中添加不同氯含量(质量分数0.1%、0.3%、0.5%)的CaCl2对煤热解过程中汞析出规律的影响。实验结果表明,温度是影响汞析出的关键因素;随着氯添加量的增加,Hg2+析出比例呈上升趋势,且汞的最佳析出温度降低,汞的释放率也有所降低;随着热解气氛中O2比例的增加,Hg2+比例也略有增加;较高的升温速率能加快汞的释放,也能提高Hg2+的比例。低氯煤中添加氯化钙能够强化单质汞的氧化。  相似文献   

9.
污泥灰分中磷元素含量明显高于煤,其中主要的晶体态含磷化合物为磷酸铁钙和少量的磷酸铝。利用高频加热反应装置考察了污泥-神府煤混合物快速热解过程中磷元素挥发规律。结果表明,污泥-神府煤混合物热解后磷元素主要存在于热解焦中。磷元素挥发比例随污泥添加比例的增加先升高后降低,随热解温度的升高而增加。热解温度不高于1 100 ℃时,混合物中以有机磷的挥发为主,磷元素挥发比例不高于3.2%。热解温度高于1 200 ℃后无机磷中磷元素挥发明显,1 300 ℃下最高有33.0%的磷元素随热解气体挥发出。  相似文献   

10.
在固定床装置上进行了三种煤的热解实验,考察了热解温度、热解时间等因素对煤氮迁移转化的影响。热解实验表明,A煤1 073 K热解产生HCN,在热解前3 min释放完毕,早于NH3释放,且当NH3开始逸出后HCN生成量急剧减少;三种煤热解HCN、NH3的累积释放量在不同时刻达到各自最大值后急剧下降;半焦氮随热解温度的升高而增加。在973~1 123 K三种煤热解有50%~60%煤氮转化为焦氮,40%~50%煤氮随挥发分一起释放,挥发分氮有20%~50%的氮物种以NH3和HCN的形式存在,其中,HCN占气相氮的50%~60%、NH3占40%~50%。  相似文献   

11.
以内蒙古锡盟褐煤为研究对象,通过HCl/HF洗脱煤中固有矿物质,采用机械混合法对原煤和脱矿物质煤分别负载3%的Li2CO3、Na2CO3和K2CO3,利用固定床程序升温热解-色谱分析法考察了煤中固有矿物质以及负载的碱金属碳酸盐对煤热解过程中H2S和NH3生成的影响。结果表明,煤中所固有矿物质对锡盟褐煤热解过程中H2S和NH3的生成和释放均有抑制作用,但对H2S和NH3生成的影响不同;矿物质的脱除不改变煤中有机结构及硫的存在形态,H2S的释放温区没有发生改变,而HCN的二次反应是NH3生成的主要来源之一,酸洗脱矿物质改变了煤中孔结构特性,从而影响不同温度段NH3的释放。原煤及脱矿物质煤负载的碱金属碳酸盐对其热解过程中H2S和NH3的生成都有一定的影响,K2CO3除外, 负载到原煤的其他碱金属碳酸盐都抑制了H2S的生成;Na2CO3除外,负载到脱矿物质煤的其他碱金属碳酸盐都促进了NH3的生成。  相似文献   

12.
使用溶胶-凝胶法制备了LaCoO3催化剂,采用XRD、BET和XPS等方式对催化剂进行了表征,考察了该催化剂制备过程中煅烧温度、表面活性剂PEG-6000和PEG-20000含量对其H2S选择氧化制硫磺反应催化活性的影响。结果表明,表面活性剂PEG-6000及PEG-20000的添加能明显提高LaCoO3的催化活性。0.02 mol La(NO33+0.02mol Co(NO32溶液中添加0.30 g PEG-20000、煅烧温度为650℃时所制备的LaCoO3催化活性最好;在最佳反应温度260℃下,H2S的转化率达到96.10%,硫选择性为93.77%。  相似文献   

13.
Spin-polarized periodic density functional theory was performed to characterize H2S adsorption and dissociation on graphene oxides (GO) surface. The comprehensive reaction network of H2S oxidation with epoxy and hydroxyl groups of GO was discussed. It is shown that the reduction reaction is mainly governed by epoxide ring opening and hydroxyl hydrogenation which is initiated by H transfer from H2S or its derivatives. Furthermore, the presence of another OH group at the opposite side relative to the adsorbed H2S activates the oxygen group to facilitate epoxide ring opening and hydroxyl hydrogenation. For H2S interaction with -O and -OH groups adsorption on each side of graphene, the pathway is a favorable reaction path by the introduction of intermediate states, the predicted energy barriers are 3.2 and 10.4 kcal/mol, respectively, the second H transfer is the rate-determining step in the whole reaction process. In addition, our calculations suggest that both epoxy and hydroxyl groups can enhance the binding of S to the C-C bonds and the effect of hydroxyl group is more local than that of the epoxy.  相似文献   

14.
合成了TiO_2-CeO_2柱撑黏土负载V_2O_5催化剂,通过XRD、氮气吸附脱附、TG、FT-IR、H_2-TPR、NH_3-TPD、XPS等方法对其物理化学性质进行了表征,研究了该催化剂在H2S选择性催化氧化反应中的活性。结果表明,负载5%V_2O_5的TiO_2-CeO_2柱撑黏土在180℃下催化效果最好,且尾气中不含SO_2。V_2O_5、TiO_2和CeO_2之间的相互作用提高了催化剂的活性,CeO_2提高了催化剂的热稳定性,同时提供大量晶格氧,加强了V_2O_5的氧化还原作用,降低了反应温度;TiO_2加强了VO_x和CeO_x的再氧化,降低了硫酸盐的覆盖率,从而降低了催化剂的失活速率。  相似文献   

15.
通过第一性原理计算研究了Ti_2NO_2 MXene对H_2S的吸附、分解行为. Ti_2NO_2对H_2S气体分子的吸附结果表明,两者之间为弱的物理吸附, Ti_2NO_2无法有效吸附H_2S气体.采用过渡金属(Sc、 V)修饰Ti_2NO_2的研究结果表明,Sc和V可以在Ti_2NO_2表面上稳定存在,不易发生团聚,其最稳定吸附位为N原子上方.进一步研究了Sc、 V修饰的Ti_2NO_2对H_2S气体分子的吸附行为,结果表明金属修饰后其吸附H_2S的能力明显提高.此外还发现, H_2S分子可以在Sc/Ti_2NO_2和V/Ti_2NO_2表面直接解离为HS*和H*,而后HS*中的H原子再与H*进一步结合形成H_2, S原子则与过渡金属成键. HS*在V/Ti_2NO_2表面解离的势垒为1.69 eV,低于在Sc/Ti_2NO_2表面的2.08 eV,表明V/Ti_2NO_2有望成为吸附、分解H_2S气体的理想候选材料.  相似文献   

16.
The effect of H2S on hydrodenitrogenation (HDN) of pyridine over alumina supported Mo, Ir and mixed Ir-Mo sulfide catalysts was studied. The pyridine hydrogenation was inhibited by H2S on all catalysts, while the cleavage of the C-N bond of intermediate piperidine was facilitated on the Mo and inhibited on the Ir and Ir-Mo catalysts. The promotional offect between Ir and Mo was observed in the piperidine cleavage both in the presence and absence of H2S.  相似文献   

17.
采用二次生长法在多孔α-Al2O3载体上制备MFI型(ZSM-5和silicate-1)分子筛膜;通过XRD和SEM检测,证明所合成的分子筛膜为致密、交联和无取向的MFI型分子筛膜,厚度为5 μm;单组分气体渗透实验检测中,所制备样品膜的N2渗透量均小于10-11 mol/(m2·s·Pa),可认为其无缺陷;同时,考察了样品分子筛膜对H2S/CH4混合气的分离效果,在渗透压分别为0.3和0.5 MPa时,silicate-1分子筛膜的H2S/CH4的分离因子分别为1.99和4.44,而ZSM-5分子筛膜的CH4/H2S的分离因子分别为6.71和12.85。  相似文献   

18.
Most reported fluorescent probes have limitations in practical applications in living systems due to the strong autofluorescence background,construction of probes with near-infrared(NIR) fluorescence emission is an accessible approach for addressing this challenge.We here designed a NIR fluorescent probe for monitoring the endogenous production of H_2S in living cells.The designed probe showed significant NIR fluorescence turn-on response to H_2S with high selectivity,enabling the sensitive detection H_2S.Importantly,the probe could be applied in monitoring the endogenous production of H_2S in raw 264.7 macrophages.This study showed that fluvastatin can promote the activity of cystathionineγ-lyase(CSE) for generation H_2S.  相似文献   

19.
Gaussian-2 ab initio calculations were performed to examine the six modes of unimolecular dissociation of cis-CH3CHSH+ (1+), trans-CH3CHSH+ (2+), and CH3SCH2+ (3+): 1+→CH3++trans-HCSH (1); 1+→CH3+trans-HCSH+ (2); 1+→CH4+HCS+ (3); 1+→H2+c-CH2CHS+ (4); 2+→H2+CH3CS+ (5); and 3+→H2+c-CH2CHS+ (6). Reactions (1) and (2) have endothermicities of 584 and 496 kJ mol−1, respectively. Loss of CH4 from 1+ (reaction (3)) proceeds through proton transfer from the S atom to the methyl group, followed by cleavage of the C–C bond. The reaction pathway has an energy barrier of 292 kJ mol−1 and a transition state with a wide spectrum of nonclassical structures. Reaction (4) has a critical energy of 296 kJ mol−1 and it also proceeds through the same proton transfer step as reaction (3), followed by elimination of H2. Formation of CH3CS+ from 2+ (reaction (5)) by loss of H2 proceeds through protonation of the methine (CH) group, followed by dissociation of the H2 moiety. Its energy barrier is 276 kJ mol−1. On both the MP2/6-31G* and QCISD/6-31G* potential-energy surfaces, the H2 1,1-elimination from 3+ (reaction (6)) proceeds via a nonclassical intermediate resembling c-CH3SCH2+ and has a critical energy of 269 kJ mol−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号