首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We compared a cellular automaton (CA)–finite element (FE) model and a phase-field (PF)–FE model to simulate equiaxed dendritic growth during the solidification of cubic crystals. The equations of mass and heat transports were solved in the CA–FE model to calculate the temperature field, solute concentration, and the dendritic growth morphology. In the PF–FE model, a PF variable was used to identify solid and liquid phases and another PF variable was considered to determine the evolution of solute concentration. Application to Al–3.0 wt.% Cu alloy illustrates the capability of both CA–FE and PF–FE models in modeling multiple arbitrarily-oriented dendrites in growth of cubic crystals. Simulation results from both models showed quantitatively good agreement with the analytical model developed by Lipton–Glicksman–Kurz (LGK) in the tip growth velocity and the tip equilibrium liquid concentration at a given melt undercooling. The dendrite morphology and computational time obtained from the CA–FE model are compared to those of the PF–FE model and the distinct advantages of both methods are discussed.  相似文献   

2.
A cellular automaton to track the solid–liquid interface movement is linked to finite volume computations of solute diffusion to simulate the behavior of dendritic structures in binary alloys during solidification. A significant problem encountered in the CA formulation has been the presence of artificial anisotropy in growth kinetics introduced by a Cartesian CA grid. A new technique to track the interface movement is proposed to model dendritic growth in different crystallographic orientations while reducing the anisotropy due to grid orientation. The model stability with respect to the numerical parameters (cell size and time step) for various operating conditions is examined. A method for generating an operating window in Δt and Δx has been identified, in which the model gives a grid-independent set of results for calculated dendrite tip radius and tip undercooling. Finally, the model is compared to published experimental and analytical results for both directional and equiaxed growth conditions.  相似文献   

3.
The morphological stability of dendritic growth from the binary alloy melt with an external flow is studied by means of the matched asymptotic expansion method and multiple variable expansion method. The uniformly valid asymptotic solution is obtained for the case of the large Schmidt number. The analytical result reveals that the stability of dendritic growth depends on a critical stability number above which dendritic growth is stable. The selection condition of dendritic growth determines the Peclet number, tip growth velocity, tip radius and oscillation frequency, which is significantly affected by the external flow. The stability mechanism of dendritic growth in the binary alloy melt with the external flow remains the same as that in pure melt. In the binary alloy melt with the external flow the solute concentration destabilizes the dendritic growth system. The numerical computation for various growth conditions demonstrates the variations of the critical stability number, tip growth velocity, tip radius, and oscillatory frequency with the undercooling, external flow and morphological number.  相似文献   

4.
In the finite element method, a standard approach to mesh tying is to apply Lagrange multipliers. If the interface is curved, however, discretization generally leads to adjoining surfaces that do not coincide spatially. Straightforward Lagrange multiplier methods lead to discrete formulations failing a first-order patch test [T.A. Laursen, M.W. Heinstein, Consistent mesh-tying methods for topologically distinct discretized surfaces in non-linear solid mechanics, Internat. J. Numer. Methods Eng. 57 (2003) 1197–1242].  相似文献   

5.
Numerical analysis is carried out to examine the effects of thermo-solutal convection on the formation of complex patterns in directionally solidified binary alloys. A finite-difference analysis is used for dynamic modeling of a two-dimensional prototype of the vertical Bridgman system that takes into account heat transfer in the melt, crystal, and the ampoule, as well as the melt flow and solute transport. Actual temperature data from experimental measurements are used for accurately describing the thermal boundary conditions. A range of complex dynamical behavior is predicted in the melt flow due to flow transitions and this is found to be directly related to the spatial patterns observed experimentally in the solidified alloys. The model is applied to single phase solidification in the Al–Cu and Pb–Sn systems to characterize the effect of convection on the macroscopic shape of the interface. The application of the model to hyper-peritectic alloys in the Sn–Cd system shows that the presence of oscillating flow can give rise to a novel convection induced microstructure in which a tree-like primary phase in the center of the sample is embedded in the surrounding peritectic matrix.  相似文献   

6.
The famous Newton–Kantorovich hypothesis has been used for a long time as a sufficient condition for the convergence of Newton's method to a solution of an equation. Here we present a “Kantorovich type” convergence analysis for the Gauss–Newton's method which improves the result in [W.M. Häußler, A Kantorovich-type convergence analysis for the Gauss–Newton-method, Numer. Math. 48 (1986) 119–125.] and extends the main theorem in [I.K. Argyros, On the Newton-Kantorovich hypothesis for solving equations, J. Comput. Appl. Math. 169 (2004) 315–332]. Furthermore, the radius of convergence ball is also obtained.  相似文献   

7.
The Laplace–Beltrami mesh enhancement algorithm of Hansen et al. ,  and  has been implemented and broadened to include meshes containing dendritic elements and allowing for boundary node movement. This implementation operates on an unstructured two-dimensional mesh by forming an equivalent weak statement using finite element interpolation, assembly, and solution ideas to iteratively place those nodes allowed to move. Moving boundary nodes are constrained to follow the boundary geometry described as a Wilson–Fowler spline (e.g., [3, Section 2.1.3.1]). Implementation details concerning the element basis set modifications, the metric tensor for dendritic element treatment and boundary node movement are presented. Laplacian (e.g., [6]) enhancement is included as a special case. Results are presented which illustrate the algorithm for three test problems.  相似文献   

8.
A numerical study is conducted to analyze the melting process around a horizontal circular cylinder in the presence of the natural convection in the melt phase. Two boundary conditions are investigated one of constant wall temperature over the surface of the cylinder and the other of constant heat flux. A numerical code is developed using an unstructured finite-volume method and an enthalpy porosity technique to solve for natural convection coupled to solid–liquid phase change. The validity of the numerical code used is ascertained by comparing our results with previously published results.  相似文献   

9.
The mathematical models of gas–liquid two-phase flow are introduced, in which the multi-mode eXtended Pom–Pom (XPP) model is selected to predict the viscoelastic behavior of polymer melt. The gas-penetration process is simulated using Level Set/SIMPLEC methods, which can capture the moving interfaces at different time, including the gas–melt interface and the melt front. The physical features such as velocity, temperature and elasticity are described at different time. The influences of gas delay time and injection pressure on gas-penetration time and penetration length are analyzed. The numerical results show that the Level Set/SIMPLEC methods can precisely trace the two moving interfaces in gas-penetration process, the fractional coverage increases at very low Deborah numbers, while at higher Deborah numbers the fractional coverage decreases, and the penetration length is affected significantly by gas delay time and injection pressure.  相似文献   

10.
Thomas Köllner  Thomas Boeck 《PAMM》2014,14(1):643-644
We present a two-dimensional simulation of solutal Rayleigh-Bénard-Maragoni convection in a layered system. In the initial state, the solute concentration is homogeneous in each layer but not in partition equilibrium. Diffusive transfer of solute leads to convective instability. Marangoni convection dominates initially as it operates on a smaller length scale. Rayleigh convection appears later as an instability of the mixed unstably stratified fluid near the interface. Compared to pure Marangoni convection the dynamics is more disordered due to additional flow in the bulk. (© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
Crystal growth and solute precipitation is a Stefan problem. It is a free boundary problem for a parabolic partial differential equation with a time-dependent phase interface. The velocity of the moving interface between solute and crystal is a local function. The dendritic structure of the crystal interface, which develops dynamically, requires high resolution of the interface geometry. These facts make the Lagrangian front tracking method well suited for the problem. In this paper, we introduce an upgraded version of the front tracking code and its associated algorithms for the numerical study of crystal formation. We compare our results with the smoothed particle hydrodynamics method (SPH) in terms of the crystal fractal dimension with its dependence on the Damkohler number and density ratio.  相似文献   

12.
13.
We present a general framework for solving stochastic porous medium equations and stochastic Navier–Stokes equations in the sense of martingale solutions. Following Krylov [N.V. Krylov, The selection of a Markov process from a Markov system of processes, and the construction of quasidiffusion processes, Izv. Akad. Nauk SSSR Ser. Mat. 37 (1973) 691–708] and Flandoli–Romito [F. Flandoli, N. Romito, Markov selections for the 3D stochastic Navier–Stokes equations, Probab. Theory Related Fields 140 (2008) 407–458], we also study the existence of Markov selections for stochastic evolution equations in the absence of uniqueness.  相似文献   

14.
In this paper we use Rab’s lemma [M. Ráb, Über lineare perturbationen eines systems von linearen differentialgleichungen, Czechoslovak Math. J. 83 (1958) 222–229; M. Ráb, Note sur les formules asymptotiques pour les solutions d’un systéme d’équations différentielles linéaires, Czechoslovak Math. J. 91 (1966) 127–129] to obtain new sufficient conditions for the asymptotic equivalence of linear and quasilinear systems of ordinary differential equations. Yakubovich’s result [V.V. Nemytskii, V.V. Stepanov, Qualitative Theory of Differential Equations, Princeton University Press, Princeton, New Jersey, 1966; V.A. Yakubovich, On the asymptotic behavior of systems of differential equations, Mat. Sb. 28 (1951) 217–240] on the asymptotic equivalence of a linear and a quasilinear system is developed. On the basis of the equivalence, the existence of asymptotically almost periodic solutions of the systems is investigated. The definitions of biasymptotic equivalence for the equations and biasymptotically almost periodic solutions are introduced. Theorems on the sufficient conditions for the systems to be biasymptotically equivalent and for the existence of biasymptotically almost periodic solutions are obtained. Appropriate examples are constructed.  相似文献   

15.
In [M.R. Casali, Computing Matveev's complexity of non-orientable 3-manifolds via crystallization theory, Topology Appl. 144(1-3) (2004) 201-209], a graph-theoretical approach to Matveev's complexity computation is introduced, yielding the complete classification of closed non-orientable 3-manifolds up to complexity six. The present paper follows the same point-of view, making use of crystallization theory and related results (see [M. Ferri, Crystallisations of 2-fold branched coverings of S3, Proc. Amer. Math. Soc. 73 (1979) 271-276; M.R. Casali, Coloured knots and coloured graphs representing 3-fold simple coverings of S3, Discrete Math. 137 (1995) 87-98; M.R. Casali, From framed links to crystallizations of bounded 4-manifolds, J. Knot Theory Ramifications 9(4) (2000) 443-458]) in order to significantly improve existing estimations for complexity of both 2-fold and three-fold simple branched coverings (see [O.M. Davydov, The complexity of 2-fold branched coverings of a 3-sphere, Acta Appl. Math. 75 (2003) 51-54] and [O.M. Davydov, Estimating complexity of 3-manifolds as of branched coverings, talk-abstract, Second Russian-German Geometry Meeting dedicated to 90-anniversary of A.D.Alexandrov, Saint-Petersburg, Russia, June 2002]) and 3-manifolds seen as Dehn surgery (see [G. Amendola, An algorithm producing a standard spine of a 3-manifold presented by surgery along a link, Rend. Circ. Mat. Palermo 51 (2002) 179-198]).  相似文献   

16.
Carla Henning  Lukas Moj  Tim Ricken 《PAMM》2016,16(1):449-450
It is of high interest to describe alloy solidification processes with numerical simulations. In order to predict the material behavior as precisely as possible, a ternary phase, bi-scale numerical model will be presented. This paper is based on a coupled thermo-mechanical, two-phase, two-scale finite element model developed by Moj et al. [2], where the theory of porous media (TPM) [1] has been used. Finite plasticity extended by secondary power-law creep is utilized to describe the solid phase and linear visco-elasticity with Darcy's law of permeability for the liquid phase, respectively. Here, the microscopic, temperature-driven phase transition approach is replaced by the diffusion-driven 0D model according to Wang and Beckermann [3]. The decisive material properties during solidification are captured by phenomenological formulations for dendritic growth and solute diffusion processes. A columnar as well as an equiaxial solidification example will be shown to demonstrate the principal performance of the presented model. (© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
In this paper, strong convergence theorems for approximation of common fixed points of a finite family of asymptotically demicontractive mappings are proved in Banach spaces using the new composite implicit iteration scheme with errors. Our results of this paper improve and extend the corresponding results of Chen, Song, Zhou [R.D. Chen, Y.S. Song, H.Y. Zhou, Convergence theorems for implicit iteration process for a finite family of continuous pseudocontractive mappings, J. Math. Anal. Appl. 314 (2006) 701–709], Osilike [M.O. Osilike, Implicit iteration process for common fixed points of a finite family of strictly pseudocontractive maps, J. Math. Anal. Appl. 294 (2004) 73–81], Gu [F. Gu, The new composite implicit iterative process with errors for common fixed points of a finite family of strictly pseudocontractive mappings, J. Math. Anal. Appl. 329 (2007) 766–776] and Yang and Hu [L.P. Yang, G. Hu, Convergence of implicit iteration process with random errors, Acta Math. Sinica (Chin. Ser.) 51 (1) (2008) 11–22].  相似文献   

18.
The microstructure of Pd77.5Au6Si16.5alloy solidified both on board a Chinese Retrievable Satellite and on the earth is studied. Postmortem analyses of microstructure presented that the same types of phases, primary phase (Pd3Si) and eutectics (Pd3Si + Pd solid solution) were formed in both cases. But the phase morphologies were quite different. It was dendritic for the primary phase and lamellar for the eutectics under normal gravity condition. However, under microgravity condition the primary phase was granular and the eutectic was peculiar network. Detailed analysis showed that the differences in morphologies of the microstructure were due to the existence of gravity-induced buoyancy convection on the earth which increased the mass transport abilities and decreased the thickness of the solute boundary in front of the solid-liquid interface during solidification under normal gravity condition.  相似文献   

19.
Fullerene graphs are trivalent plane graphs with only hexagonal and pentagonal faces. They are often used to model large carbon molecules: each vertex represents a carbon atom and the edges represent chemical bonds. A totally symmetric Kekulé structure in a fullerene graph is a set of independent edges which is fixed by all symmetries of the fullerene and molecules with totally symmetric Kekulé structures could have special physical and chemical properties, as suggested in [Austin, S.J, and J. Baker, P. W. Fowler, D. E. Manolopoulos, Bond-stretch Isomerism and the Fullerenes, J. Chem. Soc. Perkin Trans. 2 (1994), 2319–2323] and [Rogers, K.M., and P. W. Fowler, Leapfrog fullerenes, Huckel bond order and Kekulé structures, J. Chem. Soc. Perkin Trans. 2 (2001), 18–22]. All fullerenes with at least ten symmetries were studied in [Graver, J.E. The Structure of Fullerene Signature, DIMACS Series of Discrete Mathematics and Theoretical Computer Science 64, AMS (2005), 137–166.] and a complete catalog was given in [Graver, J. E. Catalog of All Fullerene with Ten or More Symmetries DIMACS Series of Discrete Mathematics and Theoretical Computer Science 64 AMS (2005), 167–188]. Starting from this catalog in [Bogaerts, M., and G. Mazzuoccolo, G.Rinaldi, Totally symmetric Kekulé structures in fullerene graphs with ten or more symmetries, MATCH Communications in Mathematical and in Computer Chemistry 69 (2013), 677–705] we established exactly which of them have at least one totally symmetric Kekulé structure.  相似文献   

20.
A new coupled model in the binary alloy solidification has been developed. The model is based on the cellular automaton (CA) technique to calculate the evolution of the interface governed by temperature, solute diffusion and Gibbs-Thomson effect. The diffusion equation of temperature with the release of latent heat on the solid/liquid (S/L) interface is valid in the entire domain. The temperature diffusion without the release of latent heat and solute diffusion are solved in the entire domain. In the interface cells, the energy and solute conservation, thermodynamic and chemical potential equilibrium are adopted to calculate the temperature, solid concentration, liquid concentration and the increment of solid fraction. Compared with other models where the release of latent heat is solved in implicit or explicit form according to the solid/liquid (S/L) interface velocity, the energy diffusion and the release of latent heat in this model are solved at different scales, i.e. the macro-scale and micro-scale. The variation of solid fraction in this model is solved using several algebraic relations coming from the chemical potential equilibrium and thermodynamic equilibrium which can be cheaply solved instead of the calculation of S/L interface velocity. With the assumption of the solute conservation and energy conservation, the solid fraction can be directly obtained according to the thermodynamic data. This model is natural to be applied to multiple (< 2) spatial dimension case and multiple (< 2) component alloy. The morphologies of equiaxed dendrite are obtained in numerical experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号