首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
This paper studies the operating characteristics of the variant of an M[x]/G/1 vacation queue with startup and closedown times. After all the customers are served in the system exhaustively, the server shuts down (deactivates) by a closedown time, and then takes at most J vacations of constant time length T repeatedly until at least one customer is found waiting in the queue upon returning from a vacation. If at least one customer is present in the system when the server returns from a vacation, then the server reactivates and requires a startup time before providing the service. On the other hand, if no customers arrive by the end of the J th vacation, the server remains dormant in the system until at least one customer arrives. We will call the vacation policy modified T vacation policy. We derive the steady‐state probability distribution of the system size and the queue waiting time. Other system characteristics are also investigated. The long‐run average cost function per unit time is developed to determine the suitable thresholds of T and J that yield a minimum cost. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

2.
This paper studies the vacation policies of an M/G/1 queueing system with server breakdowns, startup and closedown times, in which the length of the vacation period is controlled either by the number of arrivals during the vacation period, or by a timer. After all the customers are served in the queue exhaustively, the server is shutdown (deactivates) by a closedown time. At the end of the shutdown time, the server immediately takes a vacation and operates two different policies: (i) The server reactivates as soon as the number of arrivals in the queue reaches to a predetermined threshold N or the waiting time of the leading customer reaches T units; and (ii) The server reactivates as soon as the number of arrivals in the queue reaches to a predetermined threshold N or T time units have elapsed since the end of the closedown time. If the timer expires or the number of arrivals exceeds the threshold N, then the server reactivates and requires a startup time before providing the service until the system is empty. If some customers arrive during this closedown time, the service is immediately started without leaving for a vacation and without a startup time. We analyze the system characteristics for each scheme.  相似文献   

3.
This paper considers two types of setup/closedown policies: interruptible and insusceptible setup/closedown policies. When all customers are served exhaustively in a system under the interruptible setup/closedown policy, the server shuts down (deactivates) by a closedown time. When the server reactivates since shutdown, he needs a setup time before providing service again. If a customer arrives during a closedown time, the service is immediately started without a setup time. However, in a system under the insusceptible setup/closedown policy, customers arriving in a closedown time can not be served until the following setup time finishes. For the systems with interruptible setup/closedown times, we assume both the fully and almost observable cases, then derive equilibrium threshold strategies for the customers and analyze the stationary behavior of the systems. On the other hand, for the systems with insusceptible setup/closedown times, we only consider the fully observable case. We also illustrate the equilibrium thresholds and the social benefits for systems via numerical experiments. As far as we know, there is no work concerning equilibrium behavior of customers in queueing systems with setup/closedown times.  相似文献   

4.
Abstract

This article concerns a Geo/G/1/∞ queueing system under multiple vacations and setup-closedown times. Specifically, the operation of the system is as follows. After each departure leaving an empty system, the server is deactivated during a closedown time. At the end of each closedown time, if at least a customer is present in the system, the server begins the service of the customers (is reactivated) without setup; however, if the system is completely empty, the server takes a vacation. At the end of each vacation, if there is at least a customer in the system, the server requires a startup time (is reactivated) before beginning the service of the customers; nevertheless, if there are not customers waiting in the system, the server takes another vacation. By applying the supplementary variable technique, the joint generating function of the server state and the system length together with the main performance measures are derived. We also study the length of the different busy periods of the server. The stationary distributions of the time spent waiting in the queue and in the system under the FCFS discipline are analysed too. Finally, a cost model with some numerical results is presented.  相似文献   

5.
This paper considers the bi-level control of an M/G/1 queueing system, in which an un-reliable server operates N policy with a single vacation and an early startup. The server takes a vacation of random length when he finishes serving all customers in the system (i.e., the system is empty). Upon completion of the vacation, the server inspects the number of customers waiting in the queue. If the number of customers is greater than or equal to a predetermined threshold m, the server immediately performs a startup time; otherwise, he remains dormant in the system and waits until m or more customers accumulate in the queue. After the startup, if there are N or more customers waiting for service, the server immediately begins serving the waiting customers. Otherwise the server is stand-by in the system and waits until the accumulated number of customers reaches or exceeds N. Further, it is assumed that the server breaks down according to a Poisson process and his repair time has a general distribution. We obtain the probability generating function in the system through the decomposition property and then derive the system characteristics  相似文献   

6.
《Optimization》2012,61(3):299-321
In this study, we consider an M/M/c retrial queue with Bernoulli vacation under a single vacation policy. When an arrived customer finds a free server, the customer receives the service immediately; otherwise the customer would enter into an orbit. After the server completes the service, the server may go on a vacation or become idle (waiting for the next arriving, retrying customer). The retrial system is analysed as a quasi-birth-and-death process. The sufficient and necessary condition of system equilibrium is obtained. The formulae for computing the rate matrix and stationary probabilities are derived. The explicit close forms for system performance measures are developed. A cost model is constructed to determine the optimal values of the number of servers, service rate, and vacation rate for minimizing the total expected cost per unit time. Numerical examples are given to demonstrate this optimization approach. The effects of various parameters in the cost model on system performance are investigated.  相似文献   

7.
This paper studies the operating characteristics of an M[x]/G/1 queueing system under a modified vacation policy, where the server leaves for a vacation as soon as the system is empty. The server takes at most J vacations repeatedly until at least one customer is found waiting in the queue when the server returns from a vacation. We derive the system size distribution at different points in time, as well as the waiting time distribution in the queue. Further, we derive some important characteristics including the expected length of the busy period and idle period. This shows that the results generalize those of the multiple vacation policy and the single vacation policy M[x]/G/1 queueing system. Finally, a cost model is developed to determine the optimum of J at a minimum cost. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

8.
Zhang  Zhe George  Tian  Naishuo 《Queueing Systems》2001,38(4):419-429
This paper treats the discrete time Geometric/G/1 system with vacations. In this system, after serving all customers in the system, the server will take a random maximum number of vacations before returning to the service mode. The stochastic decomposition property of steady-state queue length and waiting time has been proven. The busy period, vacation mode period, and service mode period distributions are also derived. Several common vacation policies are special cases of the vacation policy presented in this study.  相似文献   

9.
《Applied Mathematical Modelling》2014,38(21-22):5113-5125
This paper deals with the (p, N)-policy M/G/1 queue with an unreliable server and single vacation. Immediately after all of the customers in the system are served, the server takes single vacation. As soon as N customers are accumulated in the queue, the server is activated for services with probability p or deactivated with probability (1  p). When the server returns from vacation and the system size exceeds N, the server begins serving the waiting customers. If the number of customers waiting in the queue is less than N when the server returns from vacation, he waits in the system until the system size reaches or exceeds N. It is assumed that the server is subject to break down according to a Poisson process and the repair time obeys a general distribution. This paper derived the system size distribution for the system described above at a stationary point of time. Various system characteristics were also developed. We then constructed a total expected cost function per unit time and applied the Tabu search method to find the minimum cost. Some numerical results are also given for illustrative purposes.  相似文献   

10.
This paper considers an infinite-capacity M/M/c queueing system with modified Bernoulli vacation under a single vacation policy. At each service completion of a server, the server may go for a vacation or may continue to serve the next customer, if any in the queue. The system is analyzed as a quasi-birth-and-death (QBD) process and the necessary and sufficient condition of system equilibrium is obtained. The explicit closed-form of the rate matrix is derived and the useful formula for computing stationary probabilities is developed by using matrix analytic approach. System performance measures are explicitly developed in terms of computable forms. A cost model is derived to determine the optimal values of the number of servers, service rate and vacation rate simultaneously at the minimum total expected cost per unit time. Illustrative numerical examples demonstrate the optimization approach as well as the effect of various parameters on system performance measures.  相似文献   

11.
12.
In this paper we consider a discrete-time GeoX/G/1 queue with unreliable server and multiple adaptive delayed vacations policy in which the vacation time, service time, repair time and the delayed time all follow arbitrary discrete distribution. By using a concise decomposition method, the transient and steady-state distributions of the queue length are studied, and the stochastic decomposition property of steady-state queue length has been proved. Several common vacation policies are special cases of the vacation policy presented in this study. The relationship between the generating functions of steady-state queue length at departure epoch and arbitrary epoch is obtained. Finally, we give some numerical examples to illustrate the effect of the parameters on several performance characteristics.  相似文献   

13.
This paper considers a like-queue production system in which server vacations and breakdowns are possible. The decision-maker can turn a single server on at any arrival epoch or off at any service completion. We model the system by an M[x]/M/1 queueing system with N policy. The server can be turned off and takes a vacation with exponential random length whenever the system is empty. If the number of units waiting in the system at any vacation completion is less than N, the server will take another vacation. If the server returns from a vacation and finds at least N units in the system, he immediately starts to serve the waiting units. It is assumed that the server breaks down according to a Poisson process and the repair time has an exponential distribution. We derive the distribution of the system size through the probability generating function. We further study the steady-state behavior of the system size distribution at random (stationary) point of time as well as the queue size distribution at departure point of time. Other system characteristics are obtained by means of the grand process and the renewal process. Finally, the expected cost per unit time is considered to determine the optimal operating policy at a minimum cost. The sensitivity analysis is also presented through numerical experiments.  相似文献   

14.
This paper analyzes the F-policy M/M/1/K queueing system with working vacation and an exponential startup time. The F-policy deals with the issue of controlling arrivals to a queueing system, and the server requires a startup time before allowing customers to enter the system. For the queueing systems with working vacation, the server can still provide service to customers rather than completely stop the service during a vacation period. The matrix-analytic method is applied to develop the steady-state probabilities, and then obtain several system characteristics. We construct the expected cost function and formulate an optimization problem to find the minimum cost. The direct search method and Quasi-Newton method are implemented to determine the optimal system capacity K, the optimal threshold F and the optimal service rates (μB,μV) at the minimum cost. A sensitivity analysis is conducted to investigate the effect of changes in the system parameters on the expected cost function. Finally, numerical examples are provided for illustration purpose.  相似文献   

15.
In this paper a MX/G (a, b)/1 queueing system with multiple vacations, setup time with N-policy and closedown times is considered. On completion of a service, if the queue length is ξ, where ξ < a, then the server performs closedown work. Following closedown the server leaves for multiple vacations of random length irrespective of queue length. When the server returns from a vacation and if the queue length is still less than ‘N’, he leaves for another vacation and so on, until he finds ‘N’ (N > b) customers in the queue. That is, if the server finds at least ‘N’ customers waiting for service, then he requires a setup time ‘R’ to start the service. After the setup he serves a batch of ‘b’ customers, where b  a. Various characteristics of the queueing system and a cost model with the numerical solution for a particular case of the model are presented.  相似文献   

16.
Consider a GI/M/1 queue with start-up period and single working vacation. When the system is in a closed state, an arriving customer leading to a start-up period, after the start-up period, the system becomes a normal service state. And during the working vacation period, if there are customers at a service completion instant, the vacation can be interrupted and the server will come back to the normal working level with probability p (0 ? p ? 1) or continue the vacation with probability 1 − p. Meanwhile, if there is no customer when a vacation ends, the system is closed. Using the matrix-analytic method, we obtain the steady-state distributions for the queue length at both arrival epochs and arbitrary epochs, the waiting time and sojourn time.  相似文献   

17.
将带RCH抵消策略的负顾客、启动期和N策略引入离散时间排队.休假策略为空竭服务多重工作休假.负顾客一对一抵消队首正在接受服务的正顾客,若系统中无正顾客时,到达的负顾客自动消失,负顾客不接受服务.利用拟生灭过程和矩阵几何解方法,给出了稳态队长分布及其随机分解.通过数值例子表现了启动率和负顾客到达率对稳态队长的影响.  相似文献   

18.
In this paper we study unobservable Markovian queueing systems with three types of setup/closedown policies: interruptible, skippable and insusceptible setup/closedown policies, respectively. For a system with the interruptible setup/closedown policy, service starts as soon as a customer arrives during a closedown time; However, for a system with the skippable setup/closedown policy, customers arriving in a closedown time (if any) can be served only after the closedown time finishes and the following setup time can be skipped; Then for a system with the insusceptible setup/closedown policy, customers arriving in a closedown time can??t be served until the following setup time finishes. We assume that customers need a price for service, and derive the equilibrium and socially optimal balking strategies for customers as well as the maximal social welfare. Then we make pricing control to motivate customers to adopt the optimal strategies and obtain an appropriate price that also maximizes server??s profit. Moreover, we numerically make some comparisons between the various performance measures.  相似文献   

19.
在一个M/G/1休假排队系统中,同时考虑N-策略和多重休假策略,休假终止准则为任一个条件满足,我们称其为Min(N,V)-策略。本文给出了在此策略下的排队系统的稳态队长、忙期分布等基本指标。首次使用条件等待时间方法得到稳态等待时间的LST(Laplace-Stieltjes transform),同时还列举了一个应用的实例。最后指出本文模型是几个已研究模型的推广。  相似文献   

20.
This paper studies the operating characteristics of an M[x]/G/1 queueing system under a variant vacation policy, where the server leaves for a vacation as soon as the system is empty. The server takes at most J vacations repeatedly until at least one customer is found waiting in the queue when the server returns from a vacation. If the server is busy or on vacation, an arriving batch balks (refuses to join) the system with probability 1 − b. We derive the system size distribution at different points in time, as well as the waiting time distribution in the queue. Finally, important system characteristics are derived along with some numerical illustration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号