首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Two copolymers of fluorene and thiophene with conjugated side‐chain pending acceptor end group of cyanoacetate ( P2 ) and malononitrile ( P3 ) were synthesized. Both polymers exhibit good thermal stability and low highest occupied molecular orbital level (?5.5 eV). In comparison with P2 , P3 exhibits stronger UV–vis absorption and higher hole mobility. Polymer solar cells based on P3 :PC71BM exhibits a power conversion efficiency of 1.33% under AM 1.5, 100 mW/cm2, which is three times of that based on P2 :PC71BM. The higher efficiency is attributed to better absorption, higher hole mobility, and the reduced phase separation scale in P3 :PC71BM blend. The aggregate domain size in P3 :PC71BM blend is 50 nm, much smaller than that in P2 :PC71BM blend (200 nm). Tiny difference in the end groups on side chains of P2 and P3 leads to great difference in phase separation scale, charge transport, and efficiency of their photovoltaic devices. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

2.
Silole‐containing conjugated polymers ( P1 and P2 ) carrying methyl and octyl substituents, respectively, on the silicon atom were synthesized by Suzuki polycondensation. They show strong absorption in the region of 300–700 nm with a band gap of about 1.9 eV. The two silole‐containing conjugated polymers were used to fabricate polymer solar cells by blending with PC61BM and PC71BM as the active layer. The best performance of photovoltaic devices based on P1 /PC71BM active layer exhibited power conversion efficiency (PCE) of 2.72%, whereas that of the photovoltaic cells fabricated with P2 /PC71BM exhibited PCE of 5.08%. 1,8‐Diiodooctane was used as an additive to adjust the morphology of the active layer during the device optimization. PCE of devices based on P2 /PC71BM was further improved to 6.05% when a TiOx layer was used as a hole‐blocking layer. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

3.
Two regiochemically defined polythiophenes containing thiazolothiazole acceptor unit were synthesized by palladium(0)‐catalyzed Stille coupling reaction. The thermal, electrochemical, optical, charge transport, and photovoltaic properties of these copolymers were examined. Compared to P1 with head‐to‐head coupling of two middle thiophenes, P2 with head‐to‐tail coupling of two middle thiophenes exhibits 40 nm red shift of absorption spectrum in film and 0.3 eV higher HOMO level. Both polymers exhibit field‐effect hole mobility as high as 0.02 cm2 V?1 s?1. Polymer solar cells (PSCs) were fabricated based on the blend of the polymers and methanofullerene[6,6]‐phenyl C71‐butyric acid methyl ester (PC71BM). The PSC based on P1 :PC71BM (1:2, w/w) exhibits a power conversion efficiency of 2.7% under AM 1.5, 100 mW cm?2, two times of that based on P2 :PC71BM. The higher efficiency is attributed to lower HOMO (?5.6 eV) and smaller phase separation scale in P1 :PC71BM blend. Tiny change in thiophene connection of P1 and P2 lead to great difference in HOMO, phase separation scale, and efficiency of their photovoltaic devices. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

4.
A comparative study of the photophysical performance of the prototypical fullerene derivative PC61BM with a planar small‐molecule acceptor in an organic photovoltaic device is presented. The small‐molecule planar acceptor is 2‐[{7‐(9,9‐di‐n‐propyl‐9H‐fluoren‐2‐yl)benzo[c][1,2,5]thiadiazol‐4‐yl}methylene]malononitrile, termed K12. We discuss photoinduced free charge‐carrier generation and transport in blends of PC61BM or K12 with poly(3‐n‐hexylthiophene) (P3HT), surveying literature results for P3HT:PC61BM and presenting new results on P3HT:K12. For both systems we also review previous work on film structure and correlate the structural and photophysical results. In both cases, a disordered mixed phase is formed between P3HT and the acceptor, although the photophysical properties of this mixed phase differ markedly for PC61BM and K12. In the case of PC61BM the mixed phase acts as a free carrier generation region that can efficiently shuttle carriers to the pure polymer and fullerene domains. As a result, the vast majority of excitons quenched in P3HT:PC61BM blends yield free carriers detected by the contactless time‐resolved microwave conductivity (TRMC) method. In contrast, approximately 85 % of the excitons quenched in P3HT:K12 do not result in free carriers over the nanosecond timescale of the TRMC experiment. We attribute this to poor electron‐transport properties in the mixed P3HT:K12 phase. We propose that the observed differences can be traced to the respective shapes of PC61BM and K12: the three‐dimensional nature of the fullerene cage facilitates coupling between PC61BM molecules irrespective of their relative orientation, whereas for K12 strong electronic coupling is only expected for molecules oriented with their π systems parallel to each other. Comparison between the eutectic compositions of the P3HT:PC61BM and P3HT:K12 shows that the former contains enough fullerene to form a percolation pathway for electrons, whereas the latter contains a sub‐percolating volume fraction of the planar acceptor. Furthermore, the planar K12 co‐assembles with P3HT into a disordered, glassy phase that partly accounts for the poor electron‐transport properties, and may also enhance recombination due to the strong intermolecular interactions between the donor and the acceptor. The implication for the performance of organic photovoltaic devices with the two acceptors is also discussed.  相似文献   

5.
Ternary organic blends have potential in realizing efficient bulk heterojunction (BHJ) organic solar cells by harvesting a larger portion of the solar spectrum than binary blends. Several challenging requirements, based on the electronic structure of the components of the ternary blend and their nanoscale morphology, need to be met in order to achieve high power conversion efficiency in ternary BHJs. The properties of a model ternary system comprising two donor polymers, poly(3-hexylthiophene) (P3HT) and a furan-containing, diketopyrrolopyrrole-thiophene low-bandgap polymer (PDPP2FT), with a fullerene acceptor, PC61BM, were examined. The relative miscibility of PC61BM with P3HT and PDPP2FT was examined using diffusion with dynamic secondary ion mass spectrometry (dynamic SIMS) measurements. Grazing incidence small and wide angle X-ray scattering analysis (GISAXS and GIWAXS) were used to study the morphology of the ternary blends. These measurements, along with optoelectronic characterization of ternary blend solar cells, indicate that the miscibility of the fullerene acceptor and donor polymers is a critical factor in the performance in a ternary cell. A guideline that the miscibility of the fullerene in the two polymers should be matched is proposed and further substantiated by examination of known well-performing ternary blends. The ternary blending of semiconducting components can improve the power conversion efficiency of bulk heterojunction organic photovoltaics. The blending of P3HT and PDPP2FT with PC61BM leads to good absorptive coverage of the incident solar spectrum and cascading transport energy levels. The performance of this ternary blend reveals the impact of the miscibility of PC61BM in each polymer as a function of composition, highlighting an important factor for optimization of ternary BHJs. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016, 54, 237–246  相似文献   

6.
Two phenazine donor–acceptor‐conjugated copolymers (P1 and P2) with the same polymer backbone but different anchoring positions of alkoxy chain on the phenazine unit were investigated to identify the effect of changing the position of alkoxy chains on their optical, electrochemical, blend film morphology, and photovoltaic properties. Although the optical absorption and frontier orbital energy levels were insensitive to the position of alkoxy chains, the film morphologies and photovoltaic performances changed significantly. P1/PC71BM blend film showed the formation of phase separation with large coarse aggregates, whereas P2/PC71BM blend film was homogeneous and smooth. Accordingly, power conversion efficiency (PCE) of photovoltaic devices increased from 1.50% for P1 to 2.54% for P2. In addition, the PCE of the polymer solar cell based on P2/PC71BM blend film could be further improved to 3.49% by using solvent vapor annealing treatment. These results clearly revealed that tuning the side‐chain position could be an effective way to adjust the morphology of the active layer and the efficiency of the photovoltaic device. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2910–2918  相似文献   

7.
Despite being widely used as electron acceptor in polymer solar cells, commercially available PC71BM (phenyl‐C71‐butyric acid methyl ester) usually has a “random” composition of mixed regioisomers or stereoisomers. Here PC71BM has been isolated into three typical isomers, α‐, β1‐ and β2‐PC71BM, to establish the isomer‐dependent photovoltaic performance on changing the ternary composition of α‐, β1‐ and β2‐PC71BM. Mixing the isomers in a ratio of α/β12=8:1:1 resulted in the best power conversion efficiency (PCE) of 7.67 % for the polymer solar cells with PTB7:PC71BM as photoactive layer (PTB7=poly[[4,8‐bis[(2‐ethylhexyl)oxy]benzo[1,2‐b:4,5‐b′]dithiophene‐2,6‐diyl][3‐fluoro‐2‐[(2‐ethylhexyl)carbonyl]thieno[3,4‐b]thiophenediyl]]). The three typical PC71BM isomers, even though sharing similar LUMO energy levels and light absorption, render starkly different photovoltaic performances with average‐performing PCE of 1.28–7.44 % due to diverse self‐aggregation of individual or mixed PC71BM isomers in the otherwise same polymer solar cells.  相似文献   

8.
The morphology of active layer with an interpenetrating network structure and appropriate phase separation is of great significance to improve the photovoltaic performance for polymer solar cells. A highly crystalline small molecule named DPP-TP6 was synthesized and incorporated into the narrow bandgap polymer solar cells to optimize the morphology of PTB7:PC71BM active layer. The DPP-TP6 small molecule was demonstrated to enhance the light absorbance of active layer and play the role of energy cascade to increase the exciton separation and charge transfer. What's more, DPP-TP6 facilitated forming interpenetrating network structure and increasing the phase separation size of ternary blends. These phenomena lead to a higher hole mobility and a more balanced carrier mobility, so as to increase the power conversion efficiency to 7.85% at DPP-TP6 weight ratio of 8 wt %, comparing to the pristine PTB7:PC71BM system of 6.50%. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 726–733  相似文献   

9.
Two β‐cyano‐thiophenevinylene‐based polymers containing cyclopentadithiophene ( CPDT‐CN ) and dithienosilole ( DTS‐CN ) units were synthesized via Stille coupling reaction with Pd(PPh3)4 as a catalyst. The effects of the bridged atoms (C and Si) and cyano‐vinylene groups on their thermal, optical, electrochemical, charge transporting, and photovoltaic properties were investigated. Both polymers possessed the highest occupied molecular orbital (HOMO) levels of about ?5.30 eV and the lowest unoccupied molecular orbital (LUMO) levels of about ?3.60 eV, and covered broad absorption ranges with narrow optical band gaps (ca. 1.6 eV). The bulk heterojunction polymer solar cell (PSC) devices containing an active layer of electron‐donor polymers ( CPDT‐CN and DTS‐CN ) blended with an electron‐acceptor, that is, [6,6]‐phenyl‐C61‐butyric acid methyl ester (PC61BM) or [6,6]‐phenyl‐C71‐butyric acid methyl ester (PC71BM), in different weight ratios were explored under 100 mW/cm2 of AM 1.5 white‐light illumination. The PSC device based on DTS‐CN: PC71BM (1:2 w/w) exhibited a best power conversion efficiency (PCE) value of 2.25% with Voc = 0.74 V, Jsc = 8.39 mA/cm2, and FF = 0.36. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011.  相似文献   

10.
Fullerene-based organic solar cells are generally suffering from severe microstructure evolution occurring in their bulk heterojunction active layers and thus are extremely stable. To address it, four polymerizable C70 fullerene derivatives, [6,6]-phenyl-C71-ethyl acrylate (PC71EA), [6,6]-phenyl-C71-propyl acrylate (PC71PrA), [6,6]-phenyl-C71-butyl acrylate (PC71BA), and [6,6]-phenyl-C71-pentyl acrylate (PC71PeA), have been designed, synthesized, and investigated. These fullerene compounds have a molecular structure, shape and size very like the conventional C70 fullerene acceptor, [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM), and have been found no different in their light absorption, redox potentials, and frontier orbital energy levels. Using these fullerene acrylates individually as acceptor and poly(3-hexylthiophene) as donor, organic solar cells have been fabricated and gave optimal efficiencies ranging from 3.32% to 4.16%, comparable to PC71BM-based reference cells (4.06%). Owing to their acrylate functionality, these fullerene derivatives can turn into insoluble upon heating, and thus endow their solar cell devices much better thermostability than PC71BM-based reference cells. The best one, coming from PC71PeA devices, reported an optimal efficiency of 4.16%, and maintained 91.7% efficiency after heat treatment at 150 °C for 35 h. As a sharp contrast, the PC71BM reference cell dropped its optimal efficiency from 4.06% to 0.48% only after 5 h heat treatment. X-ray diffraction, optical and atomic force microscopy, and space-charge-limited current method have been carried out to understand active layer structure, morphology, and charge mobility change during heat treatment.  相似文献   

11.
Low bandgap polymers with dithienylquinoxaline moieties based on 6H‐phenanthro[1,10,9,8‐cdefg]carbazole were synthesized via the Suzuki coupling reaction. Alkoxy groups were substituted at two different positions on the phenyl groups of the quinoxaline units of these polymers: in the para‐position (PPQP) and in the meta‐position (PPQM). The two polymers showed similar physical properties: broad absorption in the range of 400–700 nm, optical bandgaps of ~1.8 eV, and the appropriate frontier orbital energy levels for efficient charge transfer/separation at polymer/PC71BM interfaces. However, the PPQM solar cell achieved a higher PCE due to its higher Jsc. Our investigation of the morphologies of the polymer:PC71BM blend films and theoretical calculations of the molecular conformations of the polymer chains showed that the polymer with the meta‐positioned alkoxy group has better miscibility with PC71BM than the polymer with the para‐positioned alkoxy group because the dihedral angle of its phenyl group with respect to the quinoxaline unit is higher. This higher miscibility resulted in a polymer:PC71BM blend film with a better morphology and thus in a higher PCE. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 796–803  相似文献   

12.
In this study, donor–acceptor random polymers containing benzotriazole acceptor and bistriphenylamine and benzodithiophene donors, P1 and P2 , were successfully synthesized by Stille coupling polymerization. The effect of bistriphenylamine moiety and thiophene π‐conjugated linker on electrochemical, spectroelectrochemical, and optical behaviors of the polymers were investigated. Optoelectronic properties and photovoltaic performance of the polymers were examined under the illumination of AM 1.5G, 100 mW cm?2. The polymers were characterized by cyclic voltammetry, UV‐Vis‐NIR absorption spectroscopy, gel permeation chromatography. HOMO/LUMO energy levels of P1 and P2 were calculated as ?5.47 eV/–3.41 eV and ?5.43 eV/–3.27 eV, respectively. Bulk heterojunction type solar cells were constructed using blends of the polymers (donor) and [6,6]‐phenyl C71 butyric acid methyl ester (PC71BM) (acceptor). Photovoltaic studies showed that the highest power conversion efficiency of these photovoltaic devices were recorded as 3.50% with open circuit voltage; 0.79 V, short circuit current; 9.45 mA cm?2, fill factor; 0.53 for P1 :PC71BM (1:2, w/w) in 3% o‐dichlorobenzene (o‐DCB) solution and 3.15% with open circuit voltage; 0.75 V, short circuit current; 8.59 mA cm?2, fill factor; 0.49 for P2 :PC71BM (1:2, w/w) in 2% chlorobenzene (CB) solution. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 3705–3715  相似文献   

13.
A new balanced donor–acceptor molecule, namely, benzodithiophene (BDT)‐rhodanine‐[6,6]‐phenyl‐C71 butyric acid methyl ester (Rh‐PC71BM) comprising two covalently linked blocks, a p‐type oligothiophene‐containing BDT‐based moiety and an n‐type PC71BM unit was designed and synthesized. The single‐component organic solar cell (SCOSC) fabricated from Rh‐PC71BM molecules showed a power conversion efficiency (PCE) of 3.22 % with an open‐circuit voltage (Voc) of 0.98 V. These results rank are among the highest values for SCOSCs based on a monomolecular material. In particular, the one‐molecule Rh‐PC71BM device exhibits excellent thermal stability compared to reference Rh‐OH:PC71BM device. The success of our monomolecular strategy can provide a new way to develop high‐performance SCOSCs.  相似文献   

14.
The impact of the additive 1,8-diiodooctane on the morphology of bulk-heterojunction solar cells based on the systems P3HT:PC71BM, PTB7:PC71BM and PTB7-Th:PC71BM is studied using a combination of Small Angle Neutron Scattering (SANS) and Atomic Force Microscopy (AFM). The results clearly show that while in the P3HT:PC71BM system, the additive DIO promotes a slight coarsening of the phase domains (type I additive), in the systems PTB7:PC71BM and PTB7-Th:PC71BM, DIO promotes a large decrease in the size of the phase domains (type II additive). SANS is demonstrated as being particularly useful at detecting the minor morphological changes observed in the P3HT:PC71BM system, which can be hardly seen in AFM. This work illustrates how SANS complements AFM and both techniques when used together provide a deeper insight into the nanoscale structure in thin organic photovoltaic (OPV) device films.  相似文献   

15.
Thin‐film polymer solar cell consisting of [6,6]‐phenyl‐C71‐butyric acid methyl ester (PC71BM) and poly[[4,8‐bis[(2‐ethylhexyl)oxy]benzo[1,2‐b:4,5‐b′]dithiophene‐2,6‐diyl][3‐fluoro‐2‐[(2‐ethylhexyl)carbonyl]thieno[3,4‐b]thiophenediyl]] (PTB7) demonstrates elastic stretchability with the aid of a high boiling point additive, 1,8‐diiodooctane (DIO). The usage of DIO not only helps to form uniformly distributed nanocrystalline grains, but may also create free volumes between the nano‐grains that allow for relative sliding between the nano‐grains. The relative sliding can accommodate large external deformation. Large dichroic ratios of the optical absorption of both PC71BM and PTB7 were observed under large‐strain deformation, indicating reorientation of the nanocrystalline PC71BM and PTB7 polymer chains along stretching direction. The dichroic ratio decreases to nearly 1.0 as the blend was relaxed to 0% strain. Therefore, the nanometer‐size grain blending morphology provides an approach to impart stretchability to organic semiconductors that are otherwise un‐stretchable. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 814–820  相似文献   

16.
Low‐band gap selenophene‐based polymers were synthesized. Their optoelectronic and photovoltaic properties and space‐charge limited currents were compared with those of the related thiophene‐based polymers. The band gaps of the Se‐based derivatives were approximately 0.05–0.12 eV lower than those of their thiophene counterparts. Organic photovoltaic (OPV) devices based on the blends of these polymers and 1‐(3‐methoxycarbonyl)propyl‐1‐phenyl‐[6,6]‐C71 (PC71BM) were fabricated, and the maximum power conversion efficiency of the OPV device based on PSPSBT and PC71BM was 3.1%—with a short‐circuit current density (Jsc) of 9.3 mA cm?2, an open‐circuit voltage (Voc) of 0.79 V, and a fill factor of 0.42—under AM 1.5 G illumination (100 mW cm?2). © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4550–4557  相似文献   

17.
The effect of the addition of 1,8‐octanedithiol (ODT) during processing on the microstructure of blend films of poly[2,6‐(4,4‐bis‐(2‐ethylhexyl)‐4H‐cyclopenta[2,1‐b;3,4‐b′]dithiophene)‐alt‐4,7(2,1,3‐benzothiadiazole)] (PCPDTBT) and [6,6]‐phenyl‐C71 butyric acid methyl ester ([70]PCBM) is studied. Grazing incidence X‐ray diffraction and absorption spectroscopy show that the crystalline order of PCPDTBT increases when ODT is introduced in the solution phase either to neat polymer systems or to blends with [70]PCBM. The increased crystalline order is accompanied by less dispersive hole transport in the polymer, and leads to a more efficient formation of a percolating fullerene network within the blend. This contributes to an increase in photocurrent generation. However, the bimolecular recombination rate as determined from photovoltage transients increases upon addition of ODT, limiting the power conversion efficiency to values well below those expected from the energy levels of PCPDTBT. We propose some explanations for this increase in bimolecular recombination, based also on variable angle spectroscopic ellipsometry measurements. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

18.
Six alternating conjugated copolymers ( PL1 – PL6 ) of benzo[1,2‐b:4,5‐b′]dithiophene (BDT) and thiophene, containing electron‐withdrawing oxadiazole (OXD), ester, or alkyl as side chains, were synthesized by Stille coupling reaction. The structures of the polymers were confirmed, and their thermal, optical, electrochemical, and photovoltaic properties were investigated. The introduction of conjugated electron‐withdrawing OXD or formate ester side chain benefits to decrease the bandgaps of the polymers and improve the photovoltaic performance due to the low steric hindrance of BDT. Bulk heterojunction polymer solar cells (PSCs) were fabricated based on the blend of the as‐synthesized polymers and the fullerene derivative [6,6]‐phenyl‐C61‐butyric acid methyl ester (PC61BM) in a 1:2 weight ratio. The maximum power conversion efficiency of 2.06% was obtained for PL5 ‐based PSC under the illumination of AM 1.5, 100 mW/cm2. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

19.
To explore the aptitude of 1,2,4‐oxadiazole‐based electron‐acceptor unit in polymer solar cell applications, we prepared four new polymers (P1–P4) containing 1,2,4‐oxadiazole moiety in their main chain and applied them to solar cell applications. Thermal, optical, and electrochemical properties of the polymers were studied using thermogravimetric, absorption, and cyclic voltammetry analysis, respectively. All four polymers showed high thermal stability (5% degradation temperature over 335 °C), and the optical band gaps were calculated to be 2.20, 1.72, 1.37, and 1.74 eV, respectively, from the onset wavelength of the film‐state absorption band. The energy levels of the polymers were found to be suitable for bulk heterojunction (BHJ) solar cell applications. The BHJ solar cells were prepared by using the synthesized polymers as a donor and PC71BM as an electron acceptor with the configuration of ITO/PEDOT:PSS/polymer:PC71BM (1:3 wt %)/LiF/Al. One of the polymers was found to show the maximum power conversion efficiency of 1.33% with a Jsc of 4.95 mA/cm2, a Voc of 0.68 V, and a FF of 40%, measured using AM 1.5 G solar simulator at 100 mW/cm2 light illumination. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

20.
Two D–π–A copolymers, based on the benzo[1,2‐b:4,5‐b′]‐dithiophene (BDT) as a donor unit and benzo‐quinoxaline (BQ) or pyrido‐quinoxaline (PQ) analog as an acceptor (PBDT‐TBQ and PBDT‐TPQ), were designed and synthesized as a p‐type material for bulk heterojunction (BHJ) photovoltaic cells. When compared with the PBDT‐TBQ polymer, PBDT‐TPQ exhibits stronger intramolecular charge transfer, showing a broad absorption coverage at the red region and narrower optical bandgap of 1.69 eV with a relatively low‐lying HOMO energy level at ?5.24 eV. The experimental data show that the exciton dissociation efficiency of PBDT‐TPQ:PC71BM blend is better than that in the PBDT‐TBQ:PC71BM blend, which can explain that the IPCE spectra of the PBDT‐TPQ‐based solar cell were higher than that of the PBDT‐TBQ‐based solar cell. The maximum efficiency of PBDT‐TPQ‐based device reaches 4.40% which is much higher than 2.45% of PBDT‐TBQ, indicating that PQ unit is a promising electron‐acceptor moiety for BHJ solar cells. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1822–1833  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号