首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Poly(urethane‐benzoxazine) films as novel polyurethane ( PU )/phenolic resin composites were prepared by blending a benzoxazine monomer ( Ba ) and PU prepolymer that was synthesized from 2,4‐tolylene diisocyanate (TDI) and polyethylene adipate polyol (MW ca. 1000) in 2 : 1 molar ratio. DSC of PU/Ba blend showed an exotherm with maximum at ca. 246 °C due to the ring‐opening polymerization of Ba, giving phenolic OH functionalities that react with isocyanate groups in the PU prepolymer. The poly(urethane‐benzoxazine) films obtained by thermal cure were transparent, with color ranging from yellow to pale wine with increase of Ba content. All the films have only one glass transition temperature (Tg ) from viscoelastic measurements, indicating no phase separation in poly(urethane‐benzoxazine) due to in situ polymerization. The Tg increased with the increase of Ba content. The films containing 10 and 15% of Ba have characteristics of an elastomer, with elongation at break at 244 and 182%, respectively. These elastic films exhibit good resilience with excellent reinstating behavior. The films containing more than 20% of Ba have characteristics of plastics. The poly(urethane‐benzoxazine) films showed excellent resistance to the solvents such as tetrahydrofuran, N,N‐dimethyl formamide, and N‐methyl‐2‐pyrrolidinone that easily dissolve PU s. Thermal stability of PU was greatly enhanced even with the incorporation of a small amount of Ba . © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4165–4176, 2000  相似文献   

2.
A vinyl‐terminated benzoxazine (VB‐a), which could be polymerized through ring‐opening polymerization, was synthesized through the Mannich condensation of bisphenol A, formaldehyde, and allylamine. This VB‐a monomer was then subjected to blending with poly(ethylene oxide) (PEO), followed by thermal curing, to form poly(VB‐a)/PEO blends. The specific interactions, miscibility, morphology, and thermal properties of these blends were investigated with Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry, dynamic mechanical analysis (DMA), and scanning electron microscopy (SEM). Before curing, we found that PEO was miscible with VB‐a, as evidenced by the existence of a single composition‐dependent glass transition temperature (Tg) for each composition. The FTIR spectra revealed the presence of hydrogen‐bonding interactions between the hydroxyl groups of poly(VB‐a) and the ether groups of PEO. Indeed, the ring‐opening reaction and subsequent polymerization of the benzoxazine were facilitated significantly by the presence of PEO. After curing, DMA results indicated that the 50/50 poly(VB‐a)/PEO blend exhibited two values of Tg: one broad peak appeared in the lower temperature region, whereas the other (at ca. 327 °C, in the higher temperature region) was higher than that of pristine poly(VB‐a) (301 °C). The presence of two glass transitions in the blend suggested that this blend system was only partially miscible. Moreover, SEM micrographs indicated that the poly(VB‐a)/PEO blends were heterogeneous. The volume fraction of PEO in the blends had a strong effect on the morphology. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 644–653, 2007  相似文献   

3.
A benzoxazine compound with a maleimide group, 3‐phenyl‐3,4‐dihydro‐2H‐6‐(N‐maleimido)‐1,3‐benzoxazine (HPM‐Ba), was prepared from N‐(4‐hydroxyphenyl)maleimide, formaldehyde, and aniline. The chemical structure of HBM‐Ba was identified by FT‐IR, 1H‐NMR, and elemental analysis. HPM‐Ba showed a melting point of 52–55 °C and good solubility in common organic solvents. HPM‐Ba showed a two‐stage process of thermal polymerization. The first stage arose from the polymerization of maleimide groups, and the second one was the ring‐opening reaction of benzoxazine groups. Fusible polymaleimides with a Tg of around 100 °C could be obtained by thermally polymerizing HPM‐Ba at 130 °C. Further polymerizing the polymaleimides at 240 °C resulted in a completely cured resin showing a Tg at 204 °C. Good thermal stability and self‐extinguishing behavior was observed with the cured polybenzoxazine resins. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5954–5963, 2004  相似文献   

4.
Thiophenol and p‐nitrothiophenol were evaluated as promoters for the ring opening polymerization of benzoxazine. The ring‐opening polymerization of p‐cresol type monofunctional N‐phenyl benzoxazine 1a with 10 mol % of thiophenols proceeded at 150 °C, leading to the high conversion of 1a more than 95% within 5 h, whereas the polymerization of 1a without thiophenols did not proceed under the same conditions. The promotion effect of the thiophenols on curing of bisphenol‐A type N‐phenyl benzoxazine 1b was also investigated. In the differential scanning calorimetric (DSC) analysis of the polymerization of 1b at 150 °C without using any promoters, an exothermic peak attributable to the ring‐opening reaction of benzoxazine was observed after 8 h. In contrast, in the DSC analysis of the polymerization of 1b with addition 20 mol % of p‐nitrothiophenol, an exothermic peak was observed within 2 h, to clarify the significant promoting effect of p‐nitrothiophenol. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2523–2527  相似文献   

5.
As a viable alternative to the petrochemical polyols in polyurethanes (PUs), a new soybean oil‐based polyol (PSBO) with high functionality of hydroxyl groups and built‐in (preformed) urethane bonds was introduced. At first, a facile and improved method was developed for the transformation of epoxidized soybean oil (ESBO) to carbonated soybean oil (CSBO). Then ring‐opening reaction of carbonated oil with ethanolamine (ETA) led to the polyol. After characterization by conventional spectroscopic and analytical methods, PSBO was used for the formulation of novel one‐pack PU electroinsulating wire enamels. Tunable mechanical, thermal, and electrical properties for the final PUs were achieved by replacing 10 wt% of PSBO with poly(propylene glycol) (PPG) at different number average molecular weights of 725, 1000, 2000, 4000. Investigation of the results showed that these soy‐based PUs offer excellent thermal and electrical insulating properties. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
Benzoxazine monomer (Ba) was blended with soluble poly(imide‐siloxane)s in various weight ratios. The soluble poly(imide‐siloxane)s with and without pendent phenolic groups were prepared from the reaction of 2,2′‐bis(3,4‐dicarboxylphenyl)hexafluoropropane dianhydride with α,ω‐bis(aminopropyl)dimethylsiloxane oligomer (PDMS; molecular weight = 5000) and 3,3′‐dihydroxybenzidine (with OH group) or 4,4′‐diaminodiphenyl ether (without OH group). The onset and maximum of the exotherm due to the ring‐opening polymerization for the pristine Ba appeared on differential scanning calorimetry curves around 200 and 240 °C, respectively. In the presence of poly(imide‐siloxane)s, the exothermic temperatures were lowered: the onset to 130–140 °C and the maximum to 210–220 °C. The exotherm due to the benzoxazine polymerization disappeared after curing at 240 °C for 1 h. Viscoelastic measurements of the cured blends containing poly(imide‐siloxane) with OH functionality showed two glass‐transition temperatures (Tg's), at a low temperature around ?55 °C and at a high temperature around 250–300 °C, displaying phase separation between PDMS and the combined phase consisting of polyimide and polybenzoxazine (PBa) components due to the formation of AB‐crosslinked polymer. For the blends containing poly(imide‐siloxane) without OH functionalities, however, in addition to the Tg due to PDMS, two Tg's were observed in high‐temperature ranges, 230–260 and 300–350 °C, indicating further phase separation between the polyimide and PBa components due to the formation of semi‐interpenetrating networks. In both cases, Tg increased with increasing poly(imide‐siloxane) content. Tensile measurements showed that the toughness of PBa was enhanced by the addition of poly(imide‐siloxane). Thermogravimetric analysis showed that the thermal stability of PBa also was enhanced by the addition of poly(imide‐siloxane). © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2633–2641, 2001  相似文献   

7.
Novel polyacetylenes, poly( 1 ) and poly( 2 ) substituted with benzoxazine rings were synthesized by the polymerization of the corresponding acetylene monomers 1 and 2 using Rh catalysts, [(nbd)RhCl]2, and (nbd)Rh+BPh4 (nbd = 2,5‐norbornadiene). The polymers were heated at 250 °C under N2 to obtain the corresponding polybenzoxazine resins, poly( 1 )′ and poly( 2 )′ possessing polyacetylene main chains via the ring‐opening polymerization of the benzoxazine moieties. The polyacetylene backbones were maintained after crosslinking reaction at 250 °C, which were confirmed by Raman spectroscopy. The benzoxazine resins were thermally highly stable as evidenced by differential scanning calorimetry and thermogravimetric analysis. The surface of poly( 1 )′ film became hydrophilic compared to that of poly( 1 ), while the surfaces of poly( 2 ) and poly( 2 )′ films showed almost the same hydrophilicity judging from the water contact angle measurement. Poly( 1 )′ and poly( 2 )′ exhibited refractive indices smaller than those of poly( 1 ) and poly( 2 ). © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1884–1893  相似文献   

8.
1,3‐benzoxazine 1 , bearing 4‐pyridyl moiety on the nitrogen atom, was synthesized from p‐cresol, 4‐aminopyridine, and paraformaldehyde. The efficient synthesis was achieved by adding acetic acid to suppress the strong basicity caused by the presence of 4‐aminopyridine derivatives. Upon heating 1 at 180 °C, it underwent the thermally induced ring‐opening polymerization. The resulting polymer was composed of two types of repeating unit, i.e., (1) Mannich‐type one (‐phenol‐CH2‐NR‐CH2‐) that can be expected from the general ring‐opening polymerization of conventional benzoxazines and (2) a typical phenolic resin‐type one (‐phenol‐CH2‐phenol‐) induced by release of 4‐aminopyridine and paraformaldehyde (unit B). Another structural feature of the polymer was that it possessed a benzoxazine moiety at the chain end. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 410–416  相似文献   

9.
A trifunctional benzoxazine, 1,3,5‐tris(3‐phenyl‐3,4‐dihydro‐2H‐benzo[1,3]oxazin‐6‐yl)benzene (T‐Bz) was synthesized and in an effort to reduce its curing temperature (curing maxima at 238 °C), it was mixed with various phenolic nucleophiles such as phenol (PH), p‐methoxy phenol (MPH), 2‐methyl resorcinol (MR), hydroquinone (HQ), pyrogallol (PG), 2‐naphthol (NPH), 2,7‐dihydroxy naphthalene (DHN), and 1,1'‐bi‐2‐naphthol (BINOL). The influence of these phenolic nucleophiles on ring‐opening polymerization temperature of T‐Bz was examined by DSC and FTIR analysis. T‐Bz undergoes a complete ring‐opening addition reaction in the presence of bi‐ and trifunctional phenolic nucleophiles (MR/HQ/PG/DHN) at 140 °C (heated for 3 h) and forms a networked polybenzoxazine (NPBz). The NPBzs showed a high thermal stability with Td20 of 350–465 °C and char yield of 67–78% at 500 °C; however, a diminutive weight loss (6.9–9.8%) was observed at 150–250 °C (Td5: 215–235 °C) due to degradation of phenolic end groups. This article also gives an insight on how the traces of phenolic impurities can alter the thermal properties of pure benzoxazine monomer as well as its corresponding polymer. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2811–2819  相似文献   

10.
A polyaddition system consisted of a bifunctional Nn‐propyl benzoxazine and 2‐methylresorcinol ( MR ) that proceeds at ambient temperature has been developed. In this system, the aromatic ring of MR acted as a bifunctional monomer, reacting with a two equivalent amount of benzoxazine moieties via their ring‐opening reaction. The polyaddition gave the corresponding linear polymer bearing phenolic moieties bridged by Mannich‐type linkage in the main chain. The linear polymer had a high glass transition temperature, which was comparable to that of the linear polybenzoxazine synthesized by the ring‐opening polymerization of a monofunctional Nn‐propyl benzoxazine. The employment of a bifunctional N‐allyl benzoxazine in the polyaddition system resulted in the formation of the corresponding polymer with allyl pendants, which exhibited improved heat resistance due to its thermally induced crosslinking reaction. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 3867–3872  相似文献   

11.
A novel polymer, poly( 1 ) containing benzoxazine and phenyleneethynylene moieties in the main chain with number‐average molecular weights ranging from 1400 to 9800 was obtained quantitatively by the Sonogashira–Hagihara coupling polymerization of the corresponding iodophenyl‐ and ethynylphenyl‐substituted monomer 1 . Poly( 1 ) was heated at 200 °C under N2 for 2 h to obtain the cured polymer, poly( 1 )′ via the ring‐opening polymerization of the benzoxazine moieties. The structures of the polymer before and after curing were confirmed by 1H‐NMR, IR, and UV–vis absorption and reflectance spectroscopies. Poly( 1 )′ was thermally more stable than monomer 1 and poly( 1 ). A specimen was prepared from a mixture of poly( 1 ) and phenol‐diaminodiphenylmethane type benzoxazine 2 by heating at 200 °C for 2 h under N2. The poly( 1 )/ 2 resin was thermally stable than bisphenol‐A type benzoxazine resin 3 . Poly( 1 ) exhibited XRD peaks corresponding to the d‐spacings of 1.26–0.98 and 0.40 nm, assignable to the repeating monomer unit and alignment of polymer molecules, respectively. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 2581–2589  相似文献   

12.
Thermally induced ring‐opening polymerization of monofunctional N‐allyl‐1,3‐benzoxazine 1a was compared with that of N‐(n‐propyl)‐1,3‐benzoxazine 1b to clarify an unexpected effect of allyl group to promote the polymerization, that is, in spite of the comparable bulkiness of allyl group to n‐propyl group, the polymerization of 1a was much faster than that of 1b . Such a difference in polymerization rate was also observed similarly in the comparison of thermally induced polymerization of a bifunctional N‐allyl‐benzoxazine 2a with that of a bifunctional N‐(n‐propyl) analogue 2b . These observations implied a certain contribution of an electron‐rich C? C double bond of the N‐ally group to promotion of the ring‐opening reaction of 1,3‐benzoxazine into the corresponding zwitterionic species, which would involve a mechanism to stabilize the cationic part of the zwitterionic species based on “neighboring group participation” of the C? C double bond. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

13.
In this work, a self‐healing strategy for poly(propylene oxide)s bearing coumarine‐benzoxazine units (PPO‐CouBenz)s based on light induced coumarine dimerization reactions is described. Four different types of poly(propylene oxide) amines with molecular weights ranging from 440 to 5000 Da were reacted with formaldehyde and 4‐methyl‐7‐hydroxycoumarin to yield desired (PPO‐CouBenz)s. The crosslinked polymer films were prepared by solvent casting of various compositions of PPO‐CouBenzs in chloroform followed by thermal ring opening reaction of benzoxazine groups at 210–240 °C. Thermal curing and thermal stability of the initial PPOs and final products were investigated. Using allyl benzoxazine in the formulation, it was demonstrated that the toughness of the films was improved. Photoinduced healing of coumarin‐based cured PPO‐CouBenz polymer films was investigated. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2911–2918  相似文献   

14.
The photoinitiated ring‐opening cationic polymerization of a monofunctional benzoxazine, 3‐phenyl‐3,4‐dihydro‐2H‐1,3‐benzoxazine, with onium salts such as diphenyliodonium hexafluorophosphate and triphenylsulfonium hexafluorophosphate as initiators was examined. The structures of the polymers thus formed were complex and related to the ring‐opening process of the protonated monomer either at the oxygen or nitrogen atoms. The phenolic mechanism also contributed, but its influence decreased with decreasing monomer concentration. Thermal properties of the polymers were also investigated by differential scanning calorimetry and thermogravimetric analysis. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3320–3328, 2003  相似文献   

15.
Novel mono‐ and difunctional aliphatic oxyalcohol‐based benzoxazines have been synthesized and characterized in detail. Molecular structures of the monomers were investigated by spectral analysis. The obtained benzoxazine monomers exhibit fluidic behavior, which makes them particularly useful for many applications compared to other traditional benzoxazines. Differential scanning calorimetry was used to monitor the thermal crosslinking behavior of synthesized monomers. Mono‐ and bifunctional benzoxazine monomers exhibited low curing exhothermic peak with the onset around 173 and 180 °C, respectively. Relatively, low ring‐opening polymerization temperature was due to the hydroxyl groups present in the structure of the monomers. The hydrogen bonding of hydroxyl groups may cause alignment of the monomers in the liquid state. Thermal stabilty of the polybenzoxazines was studied by thermogravimetric analysis. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2009  相似文献   

16.
A series of fluorene‐based benzoxazine copolymers were synthesized from the mixture of 9,9‐bis(4‐hydroxyphenyl)fluorene and bisphenol A, and 4,4′‐diaminodiphenyloxide and paraformaldehyde. And the cured polybenzoxazine films derived from these copolymers were also obtained. Fourier transform infrared spectroscopy (FTIR) and hydrogen nuclear magnetic resonances confirmed the structure of these benzoxazines. Their molecular weight was estimated by gel permeation chromatography. The curing behavior of the precursors was monitored by FTIR and differential scanning calorimetry. Dynamic mechanical analysis and thermogravimetric analysis were performed to study the thermal properties of the cured polymers. The cured polybenzoxazines exhibit excellent heat resistance with glass transition temperatures (Tg) of 286–317°C, good thermal stability along with the values of 5% weight loss temperatures (T5) over 340°C, and high char yield over 50% at 800°C. The mechanical properties of the cured polymers were also measured by bending tests. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
A benzoxazine ( P‐bapf ) based on 9,9‐bis(4‐aminophenyl)fluorene (BAPF), phenol, and formaldehyde was successfully prepared using two‐pot and one‐pot procedures. In the two‐pot approach, BAPF initially reacted with 2‐hydroxybenzaldehyde, leading to 9,9‐bis(4‐(2‐hydroxybenzylideneimino)phenyl)fluorene. The imine linkages of 9,9‐bis(4‐(2‐hydroxybenzylideneimino)phenyl)fluorene were then reduced by sodium borohydride, forming 9,9‐bis(4‐(2‐hydroxybenzylamino)phenyl)fluorene. Finally, paraformaldehyde was added to induce ring closure condensation, forming benzoxazine ( P‐bapf ). In the one‐pot approach, P‐bapf was obtained directly by reacting BAPF, phenol, and paraformaldehyde in various solvents. Among the solvents, we found that using toluene/ethanol (2/1, v/v) as a solvent leads to the best purity and yield. No gelation was observed in the preparation. The structure of the resulting benzoxazine was confirmed by 1H, 13C, 1H? 1H and 1H? 13C NMR spectra. P‐bapf exhibits a photoluminescent emission at 395 nm under an excitation of 275 nm. After curing, the resulting P‐bapf thermoset exhibits Tg as high as 236 °C, and the Tg can be further increased to 260 °C by copolymerization with an equal equivalent of cresol novolac epoxy. The 5% degradation temperature of the P‐bapf thermoset reaches as high as 413 °C (N2) and 431 °C (air). The refractive index at 589 nm is as high as 1.70, demonstrating a high refractive index characteristic of fluorene linkage. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

18.
The autocatalytic thermal polymerization behavior of three benzoxazine monomers containing carboxylic acid functionalities is reported. Several mixtures of these carboxylic monomers and 3‐phenyl‐3,4‐dihydro‐2H‐1,3‐benzoxazine were prepared and their thermal polymerization behavior was analyzed by differential scanning calorimetry. The acid character of these reactive monomers increases the concentration of oxonium species, thus catalyzing the benzoxazine ring opening reaction. In this way the polymerization temperature decreased by as much as 100 °C in some cases. The existence of decarboxylation processes at high temperatures has been established by FTIR‐ATR and related to the increase in thermal stability observed by TGA in some cases. A relationship between the presence of carboxylic groups in the resulting materials and their flame retardancy behavior has also been established. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6091–6101, 2008  相似文献   

19.
New hydrogenated ring‐opening metathesis polymers with excellent thermal and optical properties were developed. These polymers were prepared by the ring‐opening metathesis polymerization of ester‐substituted tetracyclododecene monomers followed by the hydrogenation of the main‐chain double bond. The degree of hydrogenation was an important factor for the thermal stability of the polymers, and as complete hydrogenation as possible was necessary to obtain a thermally stable polymer. The completely hydrogenated ring‐opening polymer derived from 8‐methyl‐8‐methoxycarbonyl‐substituted monomer has a glass‐transition temperature of 171 °C and a 5% weight‐loss temperature of 446 °C. This polymer has excellent thermal and optical properties because of its bulky and unsymmetrical polycyclic structure in the main chain and is an alternative to glass or other transparent polymers such as poly(methyl methacrylate) and polycarbonate resin. This polymer has also been used in a wide variety of applications, such as optical lenses, optical disks, optical films, and optical fiber. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4661–4668, 2000  相似文献   

20.
This article discusses an effective route to prepare amphiphilic diblock copolymers containing a poly(ethylene oxide) block and a polyolefin block that includes semicrystalline thermoplastics, such as polyethylene and syndiotactic polystyrene (s‐PS), and elastomers, such as poly(ethylene‐co‐1‐octene) and poly(ethylene‐co‐styrene) random copolymers. The broad choice of polyolefin blocks provides the amphiphilic copolymers with a wide range of thermal properties from high melting temperature ~270 °C to low glass‐transition temperature ~?60 °C. The chemistry involves two reaction steps, including the preparation of a borane group‐terminated polyolefin by the combination of a metallocene catalyst and a borane chain‐transfer agent as well as the interconversion of a borane terminal group to an anionic (? O?K+) terminal group for the subsequent ring‐opening polymerization of ethylene oxide. The overall reaction process resembles a transformation from the metallocene polymerization of α‐olefins to the ring‐opening polymerization of ethylene oxide. The well‐defined reaction mechanisms in both steps provide the diblock copolymer with controlled molecular structure in terms of composition, molecular weight, moderate molecular weight distribution (Mw/Mn < 2.5), and absence of homopolymer. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3416–3425, 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号