首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We apply the least‐squares finite element method with adaptive grid to nonlinear time‐dependent PDEs with shocks. The least‐squares finite element method is also used in applying the deformation method to generate the adaptive moving grids. The effectiveness of this method is demonstrated by solving a Burgers' equation with shocks. Computational results on uniform grids and adaptive grids are compared for the purpose of evaluation. The results show that the adaptive grids can capture the shock more sharply with significantly less computational time. For moving shock, the adaptive grid moves correctly with the shock. © 2005 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2006  相似文献   

2.
A new shift‐adaptive meshfree method for solving a class of time‐dependent partial differential equations (PDEs) in a bounded domain (one‐dimensional domain) with moving boundaries and nonhomogeneous boundary conditions is introduced. The radial basis function (RBF) collocation method is combined with the finite difference scheme, because, unlike with Kansa's method, nonlinear PDEs can be converted to a system of linear equations. The grid‐free property of the RBF method is exploited, and a new adaptive algorithm is used to choose the location of the collocation points in the first time step only. In fact, instead of applying the adaptive algorithm on the entire domain of the problem (like with other existing adaptive algorithms), the new adaptive algorithm can be applied only on time steps. Furthermore, because of the radial property of the RBFs, the new adaptive strategy is applied only on the first time step; in the other time steps, the adaptive nodes (obtained in the first time step) are shifted. Thus, only one small system of linear equations must be solved (by LU decomposition method) rather than a large linear or nonlinear system of equations as in Kansa's method (adaptive strategy applied to entire domain), or a large number of small linear systems of equations in the adaptive strategy on each time step. This saves a lot in time and memory usage. Also, Stability analysis is obtained for our scheme, using Von Neumann stability analysis method. Results show that the new method is capable of reducing the number of nodes in the grid without compromising the accuracy of the solution, and the adaptive grading scheme is effective in localizing oscillations due to sharp gradients or discontinuities in the solution. The efficiency and effectiveness of the proposed procedure is examined by adaptively solving two difficult benchmark problems, including a regularized long‐wave equation and a Korteweg‐de Vries problem. © 2016Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 1622–1646, 2016  相似文献   

3.
The numerical solution of the harmonic heat map flow problems with blowup in finite or infinite time is considered using an adaptive moving mesh method. A properly chosen monitor function is derived so that the moving mesh method can be used to simulate blowup and produce accurate blowup profiles which agree with formal asymptotic analysis. Moreover, the moving mesh method has finite time blowup when the underlying continuous problem does. In situations where the continuous problem has infinite time blowup, the moving mesh method exhibits finite time blowup with a blowup time tending to infinity as the number of mesh points increases. The inadequacy of a uniform mesh solution is clearly demonstrated.  相似文献   

4.
In this article, we conduct an a posteriori error analysis of the two‐dimensional time‐dependent Stokes problem with homogeneous Dirichlet boundary conditions, which can be extended to mixed boundary conditions. We present a full time–space discretization using the discontinuous Galerkin method with polynomials of any degree in time and the ? 2 ? ?1 Taylor–Hood finite elements in space, and propose an a posteriori residual‐type error estimator. The upper bounds involve residuals, which are global in space and local in time, and an L 2‐error term evaluated on the left‐end point of time step. From the error estimate, we compute local error indicators to develop an adaptive space/time mesh refinement strategy. Numerical experiments verify our theoretical results and the proposed adaptive strategy.  相似文献   

5.
Velocity‐based moving mesh methods update the mesh at each time level by using a velocity equation with a time‐stepping scheme. A particular velocity‐based moving mesh method, based on conservation, uses explicit time‐stepping schemes with small time steps to avoid mesh tangling. However, this can prove to be impractical when long‐term behavior of the solution is of interest. Here, we present a semi‐implicit time‐stepping scheme which manipulates the structure of the velocity equation such that it resembles a variable‐coefficient heat equation. This enables the use of maximum/minimum principle which ensures that mesh tangling is avoided. It is also shown that this semi‐implicit scheme can be extended to a fully implicit time‐stepping scheme. Thus, the time‐step restriction imposed by explicit schemes is overcome without sacrificing mesh structure. © 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 30: 321–338, 2014  相似文献   

6.
The pressure formulation of the porous medium equation has been commonly used in theoretical studies due to its much better regularities than the original formulation. The goal here is to study its use in the adaptive moving mesh finite element solution. The free boundary is traced explicitly through Darcy's law. The method is shown numerically second‐order in space and first‐order in time in the pressure variable. Moreover, the convergence order of the error in the location of the free boundary is almost second‐order in the maximum norm. However, numerical results also show that the convergence order in the original variable stays between first‐order and second‐order in L1 norm or between 0.5th‐order and first‐order in L2 norm. Nevertheless, the current method can offer some advantages over numerical methods based on the original formulation for situations with large exponents or when a more accurate location of the free boundary is desired.  相似文献   

7.
In this paper we implement the moving mesh PDE method for simulating the blowup in reaction–diffusion equations with temporal and spacial nonlinear nonlocal terms. By a time-dependent transformation, the physical equation is written into a Lagrangian form with respect to the computational variables. The time-dependent transformation function satisfies a parabolic partial differential equation — usually called moving mesh PDE (MMPDE). The transformed physical equation and MMPDE are solved alternately by central finite difference method combined with a backward time-stepping scheme. The integration time steps are chosen to be adaptive to the blowup solution by employing a simple and efficient approach. The monitor function in MMPDEs plays a key role in the performance of the moving mesh PDE method. The dominance of equidistribution is utilized to select the monitor functions and a formal analysis is performed to check the principle. A variety of numerical examples show that the blowup profiles can be expressed correctly in the computational coordinates and the blowup rates are determined by the tests.  相似文献   

8.
This article deals with moving finite element methods by use of the time-discontinuous Galerkin formulation in combination with oriented space–time meshes. A principle for mesh orientation in space–time based on minimization of the residual, related to adaptive error control via an a posteriori error estimate, is presented. The relation to Miller's moving finite element method is discussed. The article deals with scalar problems; systems will be treated in a companion article. © 1998 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 14:251–262, 1998  相似文献   

9.
Two algorithms are described [Ferris D. H. (fixed time‐step method) and Gupta and Kumar (variable time‐step method)] that solve a mathematical model for the study of the one‐dimensional moving boundary problem with implicit boundary conditions. Landau's transformation is used, in order to work with a fixed number of nodes at each time‐step. The p.d.e. is discretized using an implicit finite difference scheme. The mathematical model describes the oxygen diffusion in absorbing tissues. An important application is the estimation of time‐variant radiation treatments of cancerous tumors. © 2000 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 16: 42–61, 2000  相似文献   

10.
The selection of time step plays a crucial role in improving stability and efficiency in the Discontinuous Galerkin (DG) solution of hyperbolic conservation laws on adaptive moving meshes that typically employs explicit stepping. A commonly used selection of time step is a direct extension based on Courant-Friedrichs-Levy (CFL) conditions established for fixed and uniform meshes. In this work, we provide a mathematical justification for those time step selection strategies used in practical adaptive DG computations. A stability analysis is presented for a moving mesh DG method for linear scalar conservation laws. Based on the analysis, a new selection strategy of the time step is proposed, which takes into consideration the coupling of the $α$-function (that is related to the eigenvalues of the Jacobian matrix of the flux and the mesh movement velocity) and the heights of the mesh elements. The analysis also suggests several stable combinations of the choices of the $α$-function in the numerical scheme and in the time step selection. Numerical results obtained with a moving mesh DG method for Burgers' and Euler equations are presented. For comparison purpose, numerical results obtained with an error-based time step-size selection strategy are also given.  相似文献   

11.
A previous approach to robust intensity-modulated radiation therapy (IMRT) treatment planning for moving tumors in the lung involves solving a single planning problem before the start of treatment and using the resulting solution in all of the subsequent treatment sessions. In this paper, we develop an adaptive robust optimization approach to IMRT treatment planning for lung cancer, where information gathered in prior treatment sessions is used to update the uncertainty set and guide the reoptimization of the treatment for the next session. Such an approach allows for the estimate of the uncertain effect to improve as the treatment goes on and represents a generalization of existing robust optimization and adaptive radiation therapy methodologies. Our method is computationally tractable, as it involves solving a sequence of linear optimization problems. We present computational results for a lung cancer patient case and show that using our adaptive robust method, it is possible to attain an improvement over the traditional robust approach in both tumor coverage and organ sparing simultaneously. We also prove that under certain conditions our adaptive robust method is asymptotically optimal, which provides insight into the performance observed in our computational study. The essence of our method – solving a sequence of single-stage robust optimization problems, with the uncertainty set updated each time – can potentially be applied to other problems that involve multi-stage decisions to be made under uncertainty.  相似文献   

12.
We consider a reaction‐diffusion equation with a traveling heat source on an unbounded domain. The numerical simulation of the problem is difficult because of the moving singularity, the blow‐up phenomenon, and the delta function in the equation. Because we are only interested in the solution behavior near the heat source, we choose a bounded moving domain which contains the heat source and has the same speed as the source. Local absorbing boundary conditions are constructed on the boundaries of the moving domain. Then, we transform the moving domain to a fixed one. At last, a special moving collocation method is adopted. The new method is much simpler than the existing moving finite difference methods. Moreover, numerical experiments illustrate the accuracy and efficiency of our moving collocation method. © 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013  相似文献   

13.
In the present article, the authors have proposed a modified projective adaptive synchronization technique for fractional‐order chaotic systems. The adaptive projective synchronization controller and identification parameters law are developed on the basis of Lyapunov direct stability theory. The proposed method is successfully applied for the projective synchronization between fractional‐order hyperchaotic Lü system as drive system and fractional‐order hyperchaotic Lorenz chaotic system as response system. A comparison between the effects on synchronization time due to the presence of fractional‐order time derivatives for modified projective synchronization method and proposed modified adaptive projective synchronization technique is the key feature of the present article. Numerical simulation results, which are carried out using Adams–Boshforth–Moulton method show that the proposed technique is effective, convenient and also faster for projective synchronization of fractional‐order nonlinear dynamical systems. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
This article is concerned with the problem of pinning outer synchronization between two complex delayed dynamical networks via adaptive intermittent control. At first, a general model of hybrid‐coupled dynamical network with time‐varying internal delay and time‐varying coupling delay is given. Then, an aperiodically adaptive intermittent pinning‐control strategy is introduced to drive two such delayed dynamical networks to achieve outer synchronization. Some sufficient conditions to guarantee global outer‐synchronization are derived by constructing a novel piecewise Lyapunov function and utilizing stability analytical method. Moreover, a simple pinned‐node selection scheme determining what kinds of nodes should be pinned first is provided. It is noted that the adaptive pinning control type is aperiodically intermittent, where both control period and control width are non‐fixed. Finally, a numerical example is given to illustrate the validity of the theoretical results. © 2016 Wiley Periodicals, Inc. Complexity 21: 593–605, 2016  相似文献   

15.
Synchronization of complex networks with time‐varying coupling matrices is studied in this paper. Two kinds of time‐varying coupling are taken into account. One is the time‐varying inner coupling in the node state space and the other is the time‐varying outer coupling in the network topology space. By respectively setting linear controllers and adaptive controllers, time‐varying complex networks can be synchronized to a desired state. Meanwhile, different influences of the control parameters of linear controllers and adaptive controllers on the synchronization have also been investigated. Based on the Lyapunov function theory, we construct appropriate positive‐definite functions, and several sufficient synchronization criteria are obtained. Numerical simulations further illustrate the effectiveness of conclusions. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

16.
Adaptive time‐stepping methods based on the Monte Carlo Euler method for weak approximation of Itô stochastic differential equations are developed. The main result is new expansions of the computational error, with computable leading‐order term in a posteriori form, based on stochastic flows and discrete dual backward problems. The expansions lead to efficient and accurate computation of error estimates. Adaptive algorithms for either stochastic time steps or deterministic time steps are described. Numerical examples illustrate when stochastic and deterministic adaptive time steps are superior to constant time steps and when adaptive stochastic steps are superior to adaptive deterministic steps. Stochastic time steps use Brownian bridges and require more work for a given number of time steps. Deterministic time steps may yield more time steps but require less work; for example, in the limit of vanishing error tolerance, the ratio of the computational error and its computable estimate tends to 1 with negligible additional work to determine the adaptive deterministic time steps. © 2001 John Wiley & Sons, Inc.  相似文献   

17.
18.
研究了不同边界条件下,计及弯曲刚度的轴向运动薄膜横向振动的主动控制问题.建立计及弯曲刚度的印刷运动薄膜的计算模型.利用有限差分法,对轴向运动薄膜的振动微分方程进行离散,推导出轴向运动矩形薄膜横向振动控制系统的状态方程.采用次最优控制法,对不同边界条件下轴向运动矩形薄膜横向振动进行主动控制研究.计算结果表明:采用次最优控制法能够在短时间内迅速、有效地降低运动薄膜的振动强度,并使之衰减趋近于0.作动器作用在固定位置点处时,对运动薄膜施加控制后,四边简支边界条件下的控制效果好.作动器作用在不同位置点处时,两种边界条件下中心点处的控制效果最好.计算证明次最优控制法能够有效地抑制印刷过程中计及弯曲刚度的轴向运动薄膜的横向振动,从而提高印刷套印精度,保证精密印刷质量.  相似文献   

19.
Water wave propagation in an open channel network can be described by the viscous Burgers' equation on the corresponding connected graph, possibly with small viscosity. In this paper, we propose a fast adaptive spectral graph wavelet method for the numerical solution of the viscous Burgers' equation on a star-shaped connected graph. The vital feature of spectral graph wavelets is that they can be constructed on any complex network using the graph Laplacian. The essence of the method is that the same operator can be used for the construction of the spectral graph wavelet and the approximation of the differential operator involved in the Burgers' equation. In this paper, two test problems are considered with homogeneous Dirichlet boundary condition. The numerical results show that the method accurately captures the evolution of the localized patterns at all the scales, and the adaptive node arrangement is accordingly obtained. The convergence of the given method is verified, and efficiency is shown using CPU time.  相似文献   

20.
A numerical method based on an integro‐differential formulation is proposed for solving a one‐dimensional moving boundary Stefan problem involving heat conduction in a solid with phase change. Some specific test problems are solved using the proposed method. The numerical results obtained indicate that it can give accurate solutions and may offer an interesting and viable alternative to existing numerical methods for solving the Stefan problem. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号