首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Semiseparable matrices and many other rank‐structured matrices have been widely used in developing new fast matrix algorithms. In this paper, we generalize the hierarchically semiseparable (HSS) matrix representations and propose some fast algorithms for HSS matrices. We represent HSS matrices in terms of general binary HSS trees and use simplified postordering notation for HSS forms. Fast HSS algorithms including new HSS structure generation and HSS form Cholesky factorization are developed. Moreover, we provide a new linear complexity explicit ULV factorization algorithm for symmetric positive definite HSS matrices with a low‐rank property. The corresponding factors can be used to solve the HSS systems also in linear complexity. Numerical examples demonstrate the efficiency of the algorithms. All these algorithms have nice data locality. They are useful in developing fast‐structured numerical methods for large discretized PDEs (such as elliptic equations), integral equations, eigenvalue problems, etc. Some applications are shown. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
The Hermitian and skew-Hermitian splitting (HSS) method is an unconditionally convergent iteration method for solving large sparse non-Hermitian positive definite system of linear equations. By making use of the HSS iteration as the inner solver for the Newton method, we establish a class of Newton-HSS methods for solving large sparse systems of nonlinear equations with positive definite Jacobian matrices at the solution points. For this class of inexact Newton methods, two types of local convergence theorems are proved under proper conditions, and numerical results are given to examine their feasibility and effectiveness. In addition, the advantages of the Newton-HSS methods over the Newton-USOR, the Newton-GMRES and the Newton-GCG methods are shown through solving systems of nonlinear equations arising from the finite difference discretization of a two-dimensional convection-diffusion equation perturbed by a nonlinear term. The numerical implemen- tations also show that as preconditioners for the Newton-GMRES and the Newton-GCG methods the HSS iteration outperforms the USOR iteration in both computing time and iteration step.  相似文献   

3.
Newton iteration method can be used to find the minimal non‐negative solution of a certain class of non‐symmetric algebraic Riccati equations. However, a serious bottleneck exists in efficiency and storage for the implementation of the Newton iteration method, which comes from the use of some direct methods in exactly solving the involved Sylvester equations. In this paper, instead of direct methods, we apply a fast doubling iteration scheme to inexactly solve the Sylvester equations. Hence, a class of inexact Newton iteration methods that uses the Newton iteration method as the outer iteration and the doubling iteration scheme as the inner iteration is obtained. The corresponding procedure is precisely described and two practical methods of monotone convergence are algorithmically presented. In addition, the convergence property of these new methods is studied and numerical results are given to show their feasibility and effectiveness for solving the non‐symmetric algebraic Riccati equations. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
ABSTRACT

We analyze convergence domains of Newton's and the modified Newton methods for solving operator equations in Banach spaces assuming first that the operator in question is ω-smooth in a ball centered at the starting point. It is shown that the gap between convergence domains of these two methods cannot be closed under ω-smoothness. Its exact size for Hölder smooth operators is computed. Then we proceed to investigate their convergence domains under regular smoothness. As our analysis reveals, both domains are the same and wider than their counterparts in the previous case.  相似文献   

5.
A combination method of the Newton iteration and two‐level finite element algorithm is applied for solving numerically the steady Navier‐Stokes equations under the strong uniqueness condition. This algorithm is motivated by applying the m Newton iterations for solving the Navier‐Stokes problem on a coarse grid and computing the Stokes problem on a fine grid. Then, the uniform stability and convergence with respect to ν of the two‐level Newton iterative solution are analyzed for the large m and small H and h << H. Finally, some numerical tests are made to demonstrate the effectiveness of the method. © 2011 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2012  相似文献   

6.
In this paper, we study the convergence and the convergence rates of an inexact Newton–Landweber iteration method for solving nonlinear inverse problems in Banach spaces. Opposed to the traditional methods, we analyze an inexact Newton–Landweber iteration depending on the Hölder continuity of the inverse mapping when the data are not contaminated by noise. With the namely Hölder-type stability and the Lipschitz continuity of DF, we prove convergence and monotonicity of the residuals defined by the sequence induced by the iteration. Finally, we discuss the convergence rates.  相似文献   

7.
In this paper, two accelerated divide‐and‐conquer (ADC) algorithms are proposed for the symmetric tridiagonal eigenvalue problem, which cost O(N2r) flops in the worst case, where N is the dimension of the matrix and r is a modest number depending on the distribution of eigenvalues. Both of these algorithms use hierarchically semiseparable (HSS) matrices to approximate some intermediate eigenvector matrices, which are Cauchy‐like matrices and are off‐diagonally low‐rank. The difference of these two versions lies in using different HSS construction algorithms, one (denoted by ADC1) uses a structured low‐rank approximation method and the other (ADC2) uses a randomized HSS construction algorithm. For the ADC2 algorithm, a method is proposed to estimate the off‐diagonal rank. Numerous experiments have been carried out to show their stability and efficiency. These algorithms are implemented in parallel in a shared memory environment, and some parallel implementation details are included. Comparing the ADCs with highly optimized multithreaded libraries such as Intel MKL, we find that ADCs could be more than six times faster for some large matrices with few deflations. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
牛顿法是求解非线性方程F(x)=0的一种经典方法。在一般假设条件下,牛顿法只具有局部收敛性。本文证明了一维凸函数牛顿法的全局收敛性,并且给出了它在全局优化积分水平集方法中的应用。  相似文献   

9.
In this paper, a formulation for an interior-point Newton method of general nonlinear programming problems is presented. The formulation uses the Coleman-Li scaling matrix. The local convergence and the q-quadratic rate of convergence for the method are established under the standard assumptions of the Newton method for general nonlinear programming.  相似文献   

10.
In this article, a Newton linearized compact finite difference scheme is proposed to numerically solve a class of Sobolev equations. The unique solvability, convergence, and stability of the proposed scheme are proved. It is shown that the proposed method is of order 2 in temporal direction and order 4 in spatial direction. Moreover, compare to the classical extrapolated Crank‐Nicolson method or the second‐order multistep implicit–explicit methods, the proposed scheme is easier to be implemented as it only requires one starting value. Finally, numerical experiments on one and two‐dimensional problems are presented to illustrate our theoretical results.  相似文献   

11.
In this paper, we consider two versions of the Newton-type method for solving a nonlinear equations with nondifferentiable terms, which uses as iteration matrices, any matrix from B-differential of semismooth terms. Local and global convergence theorems for the generalized Newton and inexact generalized Newton method are proved. Linear convergence of the algorithms is obtained under very mild assumptions. The superlinear convergence holds under some conditions imposed on both terms of equation. Some numerical results indicate that both algorithms works quite well in practice.   相似文献   

12.
In this paper, we apply the two‐step Newton method to solve inverse eigenvalue problems, including exact Newton, Newton‐like, and inexact Newton‐like versions. Our results show that both two‐step Newton and two‐step Newton‐like methods converge cubically, and the two‐step inexact Newton‐like method is super quadratically convergent. Numerical implementations demonstrate the effectiveness of new algorithms.  相似文献   

13.
In this study, new high‐order backward semi‐Lagrangian methods are developed to solve nonlinear advection–diffusion type problems, which are realized using high‐order characteristic‐tracking strategies. The proposed characteristic‐tracking strategies are second‐order L‐stable and third‐order L(α)‐stable methods, which are based on a classical implicit multistep method combined with a error‐correction method. We also use backward differentiation formulas and the fourth‐order finite‐difference scheme for diffusion problem discretization in the temporal and spatial domains, respectively. To demonstrate the adaptability and efficiency of these time‐discretization strategies, we apply these methods to nonlinear advection–diffusion type problems such as the viscous Burgers' equation. Through simulations, not only the temporal and spatial accuracies are numerically evaluated but also the proposed methods are shown to be superior to the compared existing characteristic‐tracking methods under the same rates of convergence in terms of accuracy and efficiency. Finally, we have shown that the proposed method well preserves the energy and mass when the viscosity coefficient becomes zero.  相似文献   

14.
In this paper, we present a new one‐step smoothing Newton method for solving the second‐order cone complementarity problem (SOCCP). Based on a new smoothing function, the SOCCP is approximated by a family of parameterized smooth equations. At each iteration, the proposed algorithm only need to solve one system of linear equations and perform only one Armijo‐type line search. The algorithm is proved to be convergent globally and superlinearly without requiring strict complementarity at the SOCCP solution. Moreover, the algorithm has locally quadratic convergence under mild conditions. Numerical experiments demonstrate the feasibility and efficiency of the new algorithm. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
In this paper, we develop an hp‐adaptive procedure for the numerical solution of general, semilinear elliptic boundary value problems in 1d, with possible singular perturbations. Our approach combines both a prediction‐type adaptive Newton method and an hp‐version adaptive finite element discretization (based on a robust a posteriori residual analysis), thereby leading to a fully hp‐adaptive Newton–Galerkin scheme. Numerical experiments underline the robustness and reliability of the proposed approach for various examples. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
This paper is concerned with computing ?? ‐eigenpairs of symmetric tensors. We first show that computing ?? ‐eigenpairs of a symmetric tensor is equivalent to finding the nonzero solutions of a nonlinear system of equations, and then propose a modified normalized Newton method (MNNM) for it. Our proposed MNNM method is proved to be locally and cubically convergent under some suitable conditions, which greatly improves the Newton correction method and the orthogonal Newton correction method recently provided by Jaffe, Weiss and Nadler since these two methods only enjoy a quadratic rate of convergence. As an application, the unitary symmetric eigenpairs of a complex‐valued symmetric tensor arising from the computation of quantum entanglement in quantum physics are calculated by the MNNM method. Some numerical results are presented to illustrate the efficiency and effectiveness of our method.  相似文献   

17.
This work presents a radial basis collocation method combined with the quasi‐Newton iteration method for solving semilinear elliptic partial differential equations. The main result in this study is that there exists an exponential convergence rate in the radial basis collocation discretization and a superlinear convergence rate in the quasi‐Newton iteration of the nonlinear partial differential equations. In this work, the numerical error associated with the employed quadrature rule is considered. It is shown that the errors in Sobolev norms for linear elliptic partial differential equations using radial basis collocation method are bounded by the truncation error of the RBF. The combined errors due to radial basis approximation, quadrature rules, and quasi‐Newton and Newton iterations are also presented. This result can be extended to finite element or finite difference method combined with any iteration methods discussed in this work. The numerical example demonstrates a good agreement between numerical results and analytical predictions. The numerical results also show that although the convergence rate of order 1.62 of the quasi‐Newton iteration scheme is slightly slower than rate of order 2 in the Newton iteration scheme, the former is more stable and less sensitive to the initial guess. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2008  相似文献   

18.
The paper is devoted to two systems of nonsmooth equations. One is the system of equations of max-type functions and the other is the system of equations of smooth compositions of max-type functions. The Newton and approximate Newton methods for these two systems are proposed. The Q-superlinear convergence of the Newton methods and the Q-linear convergence of the approximate Newton methods are established. The present methods can be more easily implemented than the previous ones, since they do not require an element of Clarke generalized Jacobian, of B-differential, or of b-differential, at each iteration point.  相似文献   

19.
A Smoothing Newton Method for General Nonlinear Complementarity Problems   总被引:5,自引:0,他引:5  
Smoothing Newton methods for nonlinear complementarity problems NCP(F) often require F to be at least a P 0-function in order to guarantee that the underlying Newton equation is solvable. Based on a special equation reformulation of NCP(F), we propose a new smoothing Newton method for general nonlinear complementarity problems. The introduction of Kanzow and Pieper's gradient step makes our algorithm to be globally convergent. Under certain conditions, our method achieves fast local convergence rate. Extensive numerical results are also reported for all complementarity problems in MCPLIB and GAMSLIB libraries with all available starting points.  相似文献   

20.
非Hermitian正定线性方程组的外推的HSS迭代方法   总被引:1,自引:0,他引:1  
为了高效地求解大型稀疏非Hermitian正定线性方程组,在白中治、Golub和Ng提出的Hermitian和反Hermitian分裂(HSS)迭代法的基础上,通过引入新的参数并结合迭代法的松弛技术,对HSS迭代方法进行加速,提出了一种新的外推的HSS迭代方法(EHSS),并研究了该方法的收敛性.数值例子表明:通过参数值的选择,新方法比HSS方法具有更快的收敛速度和更少的迭代次数,选择了合适的参数值后,可以提高HSS方法的收敛效率.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号