首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The thermal degradation of acrylonitrile-butadiene-styrene copolymer (ABS-Br; 10 g) containing brominated flame retardant (Br: 9.59 wt.%) was carried out at 450 °C using a semi batch operation using two different temperature programs. The heating rate was found to affect the quality of the degradation oil and yield of products (liquid, gas and residue). Data on the effect of the temperature program on the accumulation of liquid products was presented. It was found that the majority of the bromine was concentrated in the carbon residue and while majority of the nitrogen accumulates in the liquid products irrespective of degradation mode. The use of a one step constant heating rate process (I) produced a higher liquid yield (39%), than a two step process (29%). Differences were also noted in the Br and N contained in the liquids produced by the two processes.  相似文献   

2.
A novel halogen‐free flame retardant (FR) consisting of brucite, aluminum phosphate (AlP), and silane coupling agent (B/AlP/A) was prepared via co‐precipitation assembly technique. The morphology, chemical compositions, size distribution, and thermal stability of B/AlP/A were investigated. When used in ethylene‐vinyl acetate (EVA) resin, the B/AlP/A could significantly enhance the flame retardant and smoke suppression performance of the EVA composites, which is mainly attributed to the AIP. With 50 wt% FR loading, the peak heat release rate (PHRR) of EVA‐B/AlP/A (299.2 kW · m?2) is much lower than that of EVA‐B/A (387.4 kW · m?2). Moreover, B/AlP/A shows an excellent smoke suppression performance. For example, the smoke production rate is 0.017 m2 · g?1 that has been decreased by 72.1%, compared with B/A. The improvement arises from the amorphous AlP layer on brucite, which helps to create a firm and porous protective char layers on the burning EVA composites. Meanwhile, better mechanical property could be simultaneously obtained with the large FR amount. The fluffy surface of B/AlP/A has good compatibility with EVA and tangle more polymer chains, enhancing the mechanical properties. In a word, this simple and convenient method could pave the way for developing a more efficient and cost‐effective brucite‐based FR.  相似文献   

3.
Glycidyl methacrylate (GMA) functionalized acrylonitrile‐butadiene‐styrene (ABS) copolymers have been prepared via an emulsion polymerization process. The epoxy‐functionalized ABS (e‐ABS) particles were used to toughen nylon‐6. Molau tests and FTIR results showed the reactions between nylon‐6 and e‐ABS have taken place. Scanning electron microscopy (SEM) displayed the compatibilization reaction between epoxy groups of e‐ABS and nylon‐6 chain ends (amine or carboxyl groups), which improve disperse morphology of e‐ABS in the nylon‐6 matrix. The presence of only a small amount of GMA (1 wt %) within the e‐ABS copolymer was sufficient to induce a pronounced improvement of the impact strength of nylon‐6 blends; whereas further increase of the GMA contents in e‐ABS resulted in lower impact strength because of the crosslinking reaction between nylon‐6 and e‐ABS, resulting in agglomeration of the ABS particles. SEM results showed shear yielding of the nylon‐6 matrix and cavitation of rubber particles were the major toughening mechanisms. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 2170–2180, 2005  相似文献   

4.
The flame retardancy mechanisms of a novel polyhedral oligomeric silsesquioxane containing 9,10‐dihydro‐9‐oxa‐10‐phosphaphenanthrene‐10‐oxide (DOPO‐POSS) in polycarbonate/acrylonitrile‐butadiene‐styrene (PC/ABS) blends are discussed. The thermal stability of PC/ABS composites with different DOPO‐POSS loadings are investigated by TGA and the enhancement of the thermal stability could be found at high temperature range. Their fire behavior is tested by the LOI, UL‐94, and cone calorimeter. Excellent flame retardancy of PC/ABS composites have been discovered with 10 wt% DOPO‐POSS loading. TGA‐FTIR, FTIR, XPS, and SEM, respectively, are used to characterize the gaseous products and the condensed residue in thermal decomposition, and the micro‐structure of the chars from cone calorimeter tests. The decomposition of PC/ABS with 10 wt% DOPO‐POSS shows significant changes compared with PC/ABS by TGA, FTIR, TGA‐FTIR, and XPS analysis. The enhancement of the thermal‐oxidative stability of PC/ABS with DOPO‐POSS is attributed to the interaction between DOPO‐POSS and PC/ABS at high temperature, which might be the key for improvement of the flame retardancy. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
In this study, high electrical conductivity and flame retardant electrothermal ethylene‐vinyl acetate (EVA) films were fabricated by using carbon nanotubes‐wrapped ammonium polyphosphate (CAPP) and conductive carbon black (CCB). CAPP was used as a synergistic conductive filler and flame retardant to improve the electrical conductivity and fire safety of the electrothermal film at the same time. Besides, the heat release rate (HRR) and the total heat release (THR) of EVA‐5 decreased about 81.5% and 57.3% compared with those of pure EVA film, respectively. Moreover, by incorporating a small amount of CAPP, EVA‐5 can reach up to V‐0 rating with an limiting oxygen index (LOI) value of 31%. EVA film fabricated by CCB and CAPP as conductive material exhibited almost 10 times increment on electrical conductivity than that of same content for CCB alone. And time vs temperature profiles of EVA‐5 showed a stable trend over 3600 seconds without any offset at a given applied voltage of 15 V. Moreover, its excellent cycle heating performance indicated that the electrothermal film can be recycled, which meets the requirements of sustainable development. In a word, this novel strategy provides a simple and effective way to obtain a high conductive and fire safety electrothermal film.  相似文献   

6.
Magnesium hydroxide (MH) was surface modified by bis [3‐(triethoxysilyl) propyl] tetrasulfide (Si‐69) in order to improve its compatibility with ethylene‐vinyl acetate (EVA) copolymer substrate. The modified MH (SMH) was then introduced to EVA through melt blending. The flammability was evaluated by limiting oxygen index (LOI), vertical burning test and cone calorimeter; 40 wt% MH/SMH will lift LOI from 17.9 in EVA to 22.3/23.3, respectively. In cone test, the peak heat release rate (PHRR) of EVA is 1382 kW/m2 and reduced sharply to 601/489 kW/m2 for 40 wt% MH/SMH adding, respectively. The mechanical properties were tested by a drawing machine. The elongation at break dropped almost 7 times by the addition of 40 wt% MH, from 825% in EVA dived to 124%, whereas up to 745% by the addition of 40 wt% SMH. The morphology observation by scanning electron microscopy (SEM) indicated the dispersion of surface modified MH in EVA was remarkably improved than that of MH. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
The graft copolymerization of undecylenic acid onto acrylonitrile–butadiene–styrene terpolymer (ABS) was initiated with benzoyl peroxide (BPO) in a 1,2‐dichloroethane solution. IR spectra confirmed that undecylenic acid was successfully grafted onto the ABS backbone. The influence of the concentrations of undecylenic acid, BPO, and ABS on the graft copolymerization was studied. A reaction mechanism was proposed: the grafting most likely took place through the addition of poly(undecylenic acid) radicals to the double bond of the butadiene region of ABS. A monomer cage effect on the graft reaction was observed to depend on the 1.5 power of the monomer concentration from the experimental results of the initial rate of graft copolymerization. The initial rate of graft copolymerization was written as Rp = 1.77 × 10−3[P][I2][M]2.5/([P]+2.75[M]2.5)2. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 486–494, 2001  相似文献   

8.
9.
《先进技术聚合物》2018,29(1):337-346
A biology‐inspired approach was utilized to functionalize hexagonal boron nitride (h‐BN), to enhance the interfacial interactions in acrylonitrile‐butadiene‐styrene copolymer/boron nitride (ABS/BN) composites. The poly (dopamine), poly (DOPA) layer, was formed on the surface of BN platelets via spontaneously oxidative self‐polymerization of DOPA in aqueous solution. The modified BN (named as mBN) coated with poly (DOPA) was mixed with ABS resin by melting. The strong interfacial interactions via π‐π stacking plus Van der Waals, both derived from by poly (DOPA), significantly promoted not only the homogeneous dispersion of h‐BN in the matrix, but also the effective interfacial stress transfer, leading to improve the impact strength of ABS/mBN even at slight mBN loadings. A high thermal conductivity of 0.501 W/(m·K) was obtained at 20 wt% mBN content, reaching 2.63 times of the value for pure ABS (0.176 W/(m·K)). Meanwhile, the ABS/mBN composites also exhibited an excellent electrical insulation property, which can be expected to be applied in the fields of thermal management and electrical enclosure.  相似文献   

10.
《先进技术聚合物》2018,29(1):497-506
A novel phosphorus‐containing, nitrogen‐containing, and sulfur‐containing reactive flame retardant (BPD) was successfully synthesized by 1‐pot reaction. The intrinsic flame‐retardant epoxy resins were prepared by blending different content of BPD with diglycidyl ether of bisphenol‐A (DGEBA). Thermal stability, flame‐retardant properties, and combustion behaviors of EP/BPD thermosets were investigated by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), limited oxygen index (LOI) measurement, UL94 vertical burning test, and cone calorimeter test. The flame‐retardant mechanism of BPD was studied by TGA/infrared spectrometry (TGA‐FTIR), pyrolysis‐gas chromatography/mass spectrometry (Py‐GC/MS), morphology, and chemical component analysis of the char residues. The results demonstrated that EP/BPD thermosets not only exhibited outstanding flame retardancy but also kept high glass transition temperature. EP/BPD‐1.0 thermoset achieved LOI value of 39.1% and UL94 V‐0 rating. In comparison to pure epoxy thermoset, the average of heat release rate (av‐HRR), total heat release (THR), and total smoke release (TSR) of EP/BPD‐1.0 thermoset were decreased by 35.8%, 36.5% and 16.5%, respectively. Although the phosphorus content of EP/BPD‐0.75 thermoset was lower than that of EP/DOPO thermoset, EP/BPD‐0.75 thermoset exhibited better flame retardancy than EP/DOPO thermoset. The significant improvement of flame retardancy of EP/BPD thermosets was ascribed to the blocking effect of phosphorus‐rich intumescent char in condensed phase, and the quenching and diluting effects of abundant phosphorus‐containing free radicals and nitrogen/sulfur‐containing inert gases in gaseous phase. There was flame‐retardant synergism between phosphorus, nitrogen, and sulfur of BPD.  相似文献   

11.
A new series of microcapsules containing pentaerythritol (PER) and ammonium polyphosphate (APP) with glycidyl methacrylate and butyl methacrylate as shell materials were synthesized by in situ polymerization. The structure and performance of the microencapsulated APP and microencapsulated PER were characterized by Fourier transform infrared spectroscopy, X‐ray photoelectron spectroscopy, scanning electron microscopy, and water contact angle. The flame retarded ethylene‐vinyl acetate copolymer (EVA) composites were studied by limiting oxygen index, UL‐94 test, and cone calorimeter. It was found that the microencapsulation of flame retardants (FRs) with the glycidyl methacrylate and butyl methacrylate lead to a decrease in the particle's water solubility and an improvement of the hydrophobicity. Results also demonstrated that the FR properties of EVA/microencapsulated APP/microencapsulated PER composites were better than those of the EVA/APP/PER composites at the same loading of FRs. The thermogravimetric analysis results reflected that the microencapsulated EVA composites had better thermal stability because of the forming of stable char during the combustion. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
The economic and environmentally friendly flame‐retardant compound, tetramethyl (6‐chloro‐1,3,5‐triazine‐2,4‐diyl)bis(oxy)bis(methylene) diphosphonate ( CN‐1 ), was synthesized by a simple two‐step procedure from dimethyl phosphate, and its chemical structure was characterized by 1H, 13C, and 31P nuclear magnetic resonance and gas chromatography mass spectroscopy. Using the traditional pad–dry–cure method, we obtained several different add‐ons (wt%) by treating cotton twill fabric with flame retardant ( CN‐1 ). Thermogravimetric analysis, in an air and nitrogen atmosphere, of the modified cotton showed that decomposition occurred ~230°C with 16% residue weight char yield at 600°C, indicating high thermal stability for all treated levels. Limiting oxygen index (LOI) and the vertical flammability test were employed to determine the effectiveness of the flame‐retardant treatments on the fabrics. LOI values increased from ~18 vol% oxygen in nitrogen for untreated fabric to maximum of 34 vol% for the highest treatment level. Fabrics with higher levels of flame retardant also easily passed the vertical flammability test. Furthermore, Fourier transform infrared and scanning electron microscopy were utilized to characterize the chemical structure as well as the surface morphology of the flame‐retardant treated twill fabrics, including char area and the edge between unburned fabric and char area. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
In this work, Fe‐montmorillonite (Fe‐MMT) is synthesized and used as a synergistic agent in ethylene vinyl acetate/magnesium hydroxide (EVA/MH) flame retardant formulations. The synergistic effect of Fe‐MMT with magnesium hydroxide (MH) as the halogen‐free flame retardant for ethylene vinyl acetate (EVA) is studied by thermogravimetric analysis (TGA), limiting the oxygen index (LOI), UL‐94, and cone calorimetry test. Compared with that of Na‐MMT, it indicates that the synergistic effects of Fe‐MMT enhance the LOI value of EVA/MH polymer and improve the thermal stability and reduce the heat release rate (HRR). The structure and morphology of nanocomposites are studied by X‐ray diffraction (XRD) and transmission electron microscopy (TEM). The mechanical properties of the EVA composites have also been studied here, indicating that the use of Fe‐MMT reduces the amount of inorganic fillers. MH hence enhances the mechanical properties of the EVA composite while keeping the UL‐94 V‐0 rating. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
A novel phosphorus monomer (PDHA) has been synthesized through phenyl dichlorophosphate (PDPC) reacting with 2‐hydroxyethyl acrylate (HEA). The structure of PDHA was characterized by Fourier transform infrared spectroscopy (FTIR) and 1H nuclear magnetic resonance spectroscopy (1H NMR). A series of UV curable resins were manufactured by blending PDHA with triglycidyl isocyanurate acrylate (TGICA) at different weight ratios. The fire performance was examined by micro‐scale combustion calorimeter (MCC) and limiting oxygen index (LOI). The results obtained from MCC indicated that the addition of PDHA to TGICA reduced the HRR and HRC. In addition, the LOI values varied from 28 to 34. The char residues of the composites were observed by scanning electron microscopy (SEM). Their thermal degradation behavior was investigated by thermogravimetric analysis and real time FTIR analysis (RT‐FTIR). The test results indicated that when the weight ratio of PDHA/TGICA = 1:1, the onset temperature of the composite was highest and the most char residue at 700°C was observed. RT‐FTIR showed that the phosphate group of PDHA first degraded to form poly(phosphoric acid)s at around 300°C, which had the major contribution to form the compact char to protect the sample from further degradation. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
Mg‐Al‐Fe ternary‐layered double hydroxides (LDHs) were synthesized by a calcination‐rehydration method using Bayer red mud. The products were characterized using X‐ray diffraction and thermogravimetric analysis. The flammability and thermal degradation of ethylene‐vinyl acetate/layered double hydroxides/zinc borate (EVA/LDHs/ZB) composites were studied with limiting oxygen index, UL 94, cone calorimeter test, smoke density test, and thermogravimetry‐Fourier transform infrared spectrometry. Although limiting oxygen index value of the composites decreased with increasing ZB amount, a suitable addition of ZB can apparently improve the UL 94 rating of the material. The heat release rate of the 5% ZB containing ternary composites decreased compared with the EVA/LDHs composites. It is obtained from smoke density test that ZB could help smoke suppression. The ternary composites possessed a higher thermal stability than the EVA/LDHs composites. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
Through addition reaction of Schiff‐base terephthalylidene‐bis‐(p‐aminophenol) ( DP‐1 ) and diethyl phosphite (DEP), a novel phosphorus‐modified epoxy, 4,4'‐diglycidyl‐(terephthalylidene‐bis‐(p‐aminophenol))diphosphonate ether ( EP‐2 ), was obtained. An modification reaction between EP‐2 and DP‐1 resulted in an epoxy compound, EP‐3 , possessing both phosphonate groups and C?N imine groups. The structure of EP‐2 was characterized by Fourier transform infrared (FTIR), elemental analysis (EA), 1H, 13C, and 31P NMR analyses. The thermal properties of phosphorus‐modified epoxies cured with 4,4'‐diaminodiphenylmethane (MDA) and 4,4'‐diaminodiphenyl ether (DDE) were studied by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The activation energies of dynamic thermal degradation (Ed) were calculated using Kissinger and Ozawa's methods. The thermal degradation mechanism was characterized using thermogravimetric analysis/infrared spectrometry (TG‐IR). In addition, the flame retardancy of phosphorus‐modified epoxy thermosets was evaluated using limiting oxygen index (LOI) and UL‐94 vertical test methods. Via an ingenious design, phosphonate groups were successfully introduced into the backbone of the epoxies; the flame retardancy of phosphorus‐modified epoxy thermosets was distinctly improved. Due to incorporation of C?N imine group, the phosphorus‐modified epoxy thermosets exhibited high thermal stabilities; the values of glass‐transition temperatures (Tgs) were about 201–210°C, the values of Ed were about 220–490 kJ/mol and char yields at 700°C were 49–53% in nitrogen and 45–50% in air. These results showed an improvement in the thermal properties of phosphorus‐modified epoxy by the incorporation of C?N imine groups. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
Ethylene vinyl acetate copolymer (EVA) flame retarded by ammonium polyphosphate (APP) and pentaerythritol (PER) was cross-linked by electron beam irradiation. The effects of vinyl acetate content and electron beam irradiation on the flame retardancy, mechanical and thermal properties of EVA composites were investigated. The volatilized products of EVA/APP/PER composites were characterized by thermogravimetric analysis/infrared spectrometry. As VA content increased, the volatilized products increased in the second decomposition step, but decreased in the third decomposition step. For all samples, the increase of irradiation dose could improve both the gel content and the Limit Oxygen Index (LOI, the minimum oxygen concentration by volume for maintaining the burning of a material) values of irradiated composites. The mechanical and thermal properties of the irradiated EVA composites were also evidently improved at appropriate irradiation dose as compared with those of unirradiated EVA composites, whereas these properties decrease at higher irradiation dose because of the electron beam irradiation-induced oxidative degradation or chain scission.  相似文献   

18.
A novel poly(methyl methacrylate) (PMMA)‐based copolymer (PMMA‐co‐BDPA) rich in aromatic rings was synthesized via radical copolymerization between a phosphorus‐containing acrylic monomer (BDPA) and methyl methacrylate (MMA). UV‐vis spectroscopy demonstrated that the copolymer had high transparency. Thermogravimetric analysis (TGA) and a differential scanning calorimeter (DSC) were used to test the thermal properties of the composites. Additionally, the PMMA‐co‐BDPA‐15 copolymer exhibited a 23% increase in the limited oxygen index (LOI) value. A cone calorimeter test indicated that the peak heat release rate (pk‐HRR) of PMMA‐co‐BDPA was reduced by 29.2% compared with that of pure PMMA, and the carbon yield of burning was obviously increased. The combined test results demonstrated that the prepared copolymer material had good transparency, thermal stability, and flame retardancy.  相似文献   

19.
A series of UV‐curable flame retardant resins was obtained using epoxy acrylate (EA) modified with 1‐oxo‐4‐hydroxymethyl‐2,6,7‐trioxa‐1‐phosphabicyclo[2.2.2]octane (PEPA). The flammability was characterized by limiting the oxygen index (LOI), UL 94 and cone calorimeter, and the thermal degradation of the flame retardant resins was studied using thermogravimetric analysis (TGA) and real time Fourier transform infrared (RTFTIR). The results indicated that the flame retardant efficiency increases and the heat release rate (HRR) decreases greatly with the content of PEPA. The TG data showed that the modified epoxy acrylates (MEAs) have lower initial decomposition temperatures and higher char residues than pure EA. The RTFTIR study indicates that the MEAs have lower thermal oxidative stability than the pure EA. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
《先进技术聚合物》2018,29(4):1294-1302
For the sake of improving the flame retardancy of epoxy resin (EP), a novel phosphorus‐containing phenolic resin (PPR) synthesized in our group instead of conventional phenolic resin (PR) was used to cure EP in the present research. The curing processes and the corresponding crosslinking structure and mechanical performance were investigated by differential scanning calorimeter and dynamic mechanical thermal analysis. Because of the introduction of flame‐retarding elements including P and Si, PPR exhibited higher charring capacity in the condensed phase, which is helpful to construct a char layer of higher quality. Correspondingly, PPR‐cured EP displayed remarkably improved flame retardance as compared to conventional PR‐cured EP through the related evaluations including limiting oxygen index, vertical burning test, and microscale combustion colorimeter. As a multifunction agent, it is believable that PPR possesses potential commercial value to prepare flame‐retardant EP with high performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号