首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 877 毫秒
1.
The spectral-kinetic characteristics of a ZnO:Ga single crystal upon excitation in the vacuum UV region have been studied. At a temperature of 8 K, the exciton luminescence line peaking at 3.356 eV has an extremely small half-width (7.2 meV) and a short decay time (360 ps). In the visible range, a wide luminescence band peaking at ~2.1 eV with a long luminescence time at 8 K and a decay time in the nanosecond range at 300 K is observed. The luminescence excitation spectra of ZnO:Ga have been measured in the range of 4–12.5 eV.  相似文献   

2.
n-ZnO/p-A IIIN (A III = Ga, Al) heterojunctions have been fabricated, which exhibit relatively strong electroluminescence in the blue-violet spectral range under forward bias. It is shown that ZnO layers grown with rf-discharge activation have a less developed surface with a significant decrease in the sizes and number of zinc clusters. The current-voltage characteristics of the heterostructures obtained have rectifying properties with a cutoff voltage corresponding to the ZnO band gap.  相似文献   

3.
The luminescence spectra of a KZnF3: Tl+ crystal are investigated in the energy range from 4.75 to 5.9 eV at temperatures of 10–300 K upon excitation into the A absorption band (5.7–6.3 eV). At T=300 K, the luminescence spectra exhibit an intense band with a maximum at 5.45 eV, which is attributed to single Tl+ ions substituted for K+ ions. The 5.723-eV intense narrow band observed at T<20 K is assigned to the 3Γ1u-1Γ1g zero-phonon transition, which is weakly allowed by the hyperfine interaction. The luminescence decay is studied as a function of temperature. The main characteristics of the luminescence spectra are adequately described in terms of the semiclassical theory based on the Franck-Condon principle and the Jahn-Teller effect for an excited sp configuration of the Tl+ ion with the use of the parameters obtained earlier from analyzing the absorption spectra of the system under investigation.  相似文献   

4.
Measurements of emission spectra, excitation spectra, intensity dependence of the luminescence, decay of the luminescence, and temperature dependence of the luminescence in ZnO are reported. The results for the emission at 1·70 eV, with the exception of the decay of the luminescence, were found to be similar to those of the yellow (2·02 eV) emission band in ZnO. Both bands could be excited at the band edge and directly, the intensity of both bands was found to be linear with excitation strength and the asymptotic regions of the temperature dependence of both bands could be approximated by exponential functions. It is proposed that the luminescent transition is an electron transition from the edge of the conduction band to a hole trapped in the bulk at 1·60 eV above the edge of the valence band, and that the luminescence center is an unassociated acceptor-like center.  相似文献   

5.
Composite material, consisting of nanosized ZnO:Ga(La) embedded in a transparent polymer matrix was prepared. ZnO:Ga(La) was synthesized via photo induced precipitation from aqueous solution containing zinc formate, hydrogen peroxide and gallium nitrate or lanthanum acetate. Solid phase was calcined at 1100 °C to obtain crystalline ZnO:Ga(La) powder (crystallite size ∼ 50 nm) and further processed in reducing atmosphere (H2/Ar) at 800 °C. Resulting material features intensive excitonic luminescence under X-ray excitation, with distinct maximum at ∼392 nm. No defect related luminescence in visible spectral range was observed. Nanocomposite material was then prepared as follows: ZnO:Ga(La) nanopowder was homogeneously dispersed in the solution of urethane dimethacrylate monomers, and the fast UV-induced polymerization was subsequently employed for preparation of optically transparent polyurethane matrix with embedded nanopowder. Radioluminescence properties of prepared nanocomposite are qualitatively similar to those of ZnO:Ga(La) nanopowder.  相似文献   

6.
The thin films of zinc oxide have been produced by the pulse laser deposition method at various levels of gallium and nitrogen doping. To obtain the n-type films we used gallium doping with concentration of gallium from zero up to 5 at %. The dependence of photoluminescence of the epitaxial ZnO:Ga films on the concentration of gallium doping has been studied. An optimum range of the n-type ZnO films doping with gallium has been determined to obtain highly effective films from the viewpoint of realizing p-n transitions. This range, on the one hand, defines the maximal PL amplitude and, on the other hand, specifies the minimal specific resistance that corresponds to an interval of 0.125–1.000 at % Ga. To produce the p-type ZnO:(Ga, N) films, the ZnO targets with the content of GaN from zero up to 2 at % were used. N2O was used as a buffer gas. A difference is observed in the positions of the peaks of the emission lines of the photoluminescence spectra for the ZnO films, doped with gallium (Ga) and co-doped with gallium and nitrogen (N).  相似文献   

7.
The reflection and luminescence excitation spectra of CaF2 crystals containing europium ions in divalent (Eu2+) and trivalent (Eu3+) states were measured in the range from 4 to 16 eV. It was established that, in CaF2 : Eu3+ crystals, luminescence of Eu3+ ions (the f-f transitions) is effectively excited both in the charge-transfer band (at ~8 eV) and in the region of the 4f–5d transitions (at ~10 eV) but is virtually not excited in the fundamental region of the crystal (at an energy higher than 10.5 eV). Luminescence of Eu2+ ions (the 427-nm band) in CaF2 : Eu3+ is effectively excited in the fundamental region of the crystal; i.e., luminescence of divalent europium ions occurs through the trapping mechanism. Emission of Eu2+ ions in CaF2 : Eu2+ crystals is characterized by the excitation band at an energy of 5.6 eV (the 4f → 5d,t 2g transitions), as well as by the exciton and interband luminescence excitations. The results obtained and data available in the literature are used to construct the energy level diagram with the basic electron transitions in the CaF2 : Eu crystals.  相似文献   

8.
The luminescence excitation spectra of localized excitons in GaSe0.85Te0.15 solid solutions have been investigated at the temperature T = 2 K. It has been shown that the excitation spectra of excitons with the localization energy ε > 10 mV exhibit an additional maximum M E located on the low-energy side of the maximum corresponding to the free exciton absorption band with n = 1. It has been found that the shift in the position of the maximum M E in the excitation spectrum with respect to the energy of detected photons increases as the energy of detected photons decreases, i.e., with an increase in the localization energy of excitons. Under the resonant excitation of localized excitons by a monochromatic light from the region of the exciton emission band, in the exciton luminescence spectrum on the low-energy side from the excitation line, there is also a maximum of the luminescence (M L ). The energy distance between the position of the excitation line and the position of the maximum in the luminescence spectrum increases with a decrease in the frequency of the excitation light. The possible mechanisms of the formation of the described structure of the luminescence excitation and exciton luminescence spectra of GaSe0.85Te0.15 have been considered. It has been concluded that the maximum M E in the excitation spectrum and the maximum M L in the luminescence spectrum are attributed to electronic–vibrational transitions with the creation and annihilation of localized excitons, respectively.  相似文献   

9.
Spectral and kinetic characteristics of the luminescence and luminescence excitation spectra of polycrystalline SrB4O7:Pr (1%) and SrB6O10:Pr (1%) samples are studied at 150–170 K. The samples show an intense luminescence band in the vicinity of 405 nm (1 S 01 I 6 transitions of Pr3+) and shorter wavelength bands also assigned to transitions from the 1 S 0 level. The main luminescence decay constant is ~2×10?7 s. The excitation spectra of the 1 S 0 luminescence in these crystals are significantly different. The SrB4O7:Pr crystal shows three well-resolved bands at 6.14, 6.55, and 6.91 eV in the region of the 4f 2→4f 15d transitions and a complex structure in the region of interband transitions (7.1–20 eV), whereas the SrB6O10:Pr crystal shows a weakly structured band at 6.31 eV and no excitation in the region of the interband transitions. The physical mechanisms that may be responsible for the observed features of the spectra are discussed.  相似文献   

10.
Gadolinium gallium garnet single-crystal films containing terbium are grown through liquid-phase epitaxy from a supercooled solution melt in the PbO-B2O3 system. The optical absorption spectra in the wavelength range 0.2–10.0 μm and the luminescence spectra excited by synchrotron radiation with energies in the range 3.5–30.0 eV are investigated at temperatures of 10 and 300 K. It is revealed that the optical absorption spectra contain an absorption band with the maximum at a wavelength λ ≈0.260 μm, which corresponds to the spin-allowed electric dipole transition between the electronic configurations 4f 8(7 F 6) → 4f 7(8 S)5d of the Tb3+ ions. The narrow low-intensity absorption bands attributed to the 4f → 4f transitions from the 7 F 6 ground level to the 7 F 0–5 multiplet levels of the Tb3+ ions are observed in the wavelength range 1.7–10.0 μm. In the luminescence spectra measured at a temperature of 10 K, the highest intensity is observed for a band with the maximum at a wavelength λ ≈ 0.544 μm, which is associated with the 5 D 47 F 5 radiative transition in the Tb3+ ion.  相似文献   

11.
Luminescence and thermally stimulated luminescence (TL) of BeO: Mg crystals are studied at T = 6–380 K. The TL glow curves and the spectra of luminescence (1.2–6.5 eV), luminescence excitation, and reflection (3.7–20 eV) are obtained. It is found that the introduction of an isovalent magnesium impurity into BeO leads to the appearance of three new broad luminescence bands at 6.2–6.3, 4.3–4.4, and 1.9–2.6 eV. The first two are attributed to the radiative annihilation of a relaxed near-impurity (Mg) exciton, the excited state of which is formed as a result of energy transfer by free excitons. The impurity VUV and UV bands are compared with those for the intrinsic luminescence of BeO caused by the radiative annihilation of self-trapped excitons (STE) of two kinds: the band at 6.2–6.3 eV of BeO: Mg is compared with the band at 6.7 eV (STE1) of BeO, and the band at 4.3–4.4 eV is compared with the band at 4.9 eV (STE2) of BeO. In the visible region, the luminescence spectrum is due to a superposition of intracenter transitions in an impurity complex including a magnesium ion. The manifestation of X-ray-induced luminescence bands at T = 6 K in BeO: Mg indicates their excitation during band-to-band transitions and in recombination processes. The energy characteristics of the impurity states in BeO: Mg are determined; the effect of the isovalent impurity on the fluctuation rearrangement of the BeO: Mg structure in the thermal transformation region of STE1 → STE2 is revealed.  相似文献   

12.
The absorption, luminescence, and excitation spectra of CaF2, SrF2, and BaF2 crystals with EuF3 or YbF3 impurity have been investigated in the range 1–12 eV. In all cases, strong wide absorption bands (denoted as CT1) were observed at energies below the 4f n -4f n ? 15d absorption threshold of impurity ions. Weaker absorption bands (denoted as CT2) with energies 1.5–2 eV lower than those of the CT1 bands have been found in the spectra of CaF2 and SrF2 crystals with EuF3 or YbF3 impurities. The fine structure of the luminescence spectra of CaF2 crystals with EuF3 impurities has been investigated under excitation in the CT bands. Under excitation in the CT1 band, several Eu centers were observed in the following luminescence spectra: C 4v , O h , and R aggregates. Excitation in the CT2 bands revealed luminescence of only C 4v defects.  相似文献   

13.
The specific features of the absorption, photoluminescence, x-ray luminescence, thermally stimulated luminescence, and photostimulated luminescence spectra of CsBr: Eu2+ single crystals grown using the Bridgman method are investigated in the temperature range 80–500 K at the highest possible dopant content (0.1–0.4 mol % EuOBr in the batch) required for preparing perfect crystals. It is shown that an increase in the dopant content leads to a broadening of the absorption and photoluminescence excitation bands with maxima at wavelengths of 250 and 350 nm due to the interconfigurational transitions 4f7(8S7/2) → 4f65d(e g , t2g) in Eu2+ ions. The photoluminescence and photostimulated luminescence spectra of CsBr: EuOBr single crystals (0.1–0.4 mol % EuOBr) contain a band at a wavelength of λmax=450 nm and bands at wavelengths of λmax=508–523 and 436 nm. The last two bands are assigned to Eu2+-VCs isolated dipole centers and Eu2+-containing aggregate centers, respectively. It is revealed that the intensity of the luminescence associated with the aggregate centers (λmax=508–523 nm) is maximum at an EuOBr content of less than or equal to 0.1 mol % and decreases with an increase in the dopant content. The possibility of forming CsEuBr3-type nanocrystals that are responsible for the green luminescence observed at a wavelength λmax=508–523 nm in CsBr: Eu crystals is discussed. The intensity of photostimulated luminescence in the CsBr: EuOBr crystals irradiated with x-ray photons is found to increase as the dopant content increases. It is demonstrated that CsBr: EuOBr crystals at a dopant content in the range 0.3–0.4 mol % can be used as x-ray storage phosphors for visualizing x-ray images with high spatial resolution.  相似文献   

14.
In this work, the geometrical, electronic structure and optical properties of P-doped ZnO under high pressures have been investigated using first-principles methods. The pressure effects on the lattice parameters, electronic band structures, and partial density of states of crystalline P-doped ZnO are calculated up to 8 GPa. Moreover, the evolution of the dielectric function, absorption coefficient (αω)), reflectivity (R(ω)), and the real part of the refractive index (n(ω)) at high pressure are also presented.  相似文献   

15.
纳米ZnO薄膜的光致发光性质   总被引:14,自引:5,他引:9  
宋国利  孙凯霞 《光子学报》2005,34(4):590-593
利用溶胶-凝胶法制备了纳米ZnO薄膜,室温下测量了样品的光致发光谱(PL)、吸收谱(ABS)、X射线衍射谱(XRD).X射线衍射(XRD)的结果表明:纳米ZnO薄膜呈多晶状态,具有六角纤锌矿晶体结构和良好的C轴取向.观察到二个荧光发射带,中心波长分别位于395 nm的紫带、524 nm的绿带和450 nm附近的蓝带.证实了纳米ZnO薄膜绿光可见发射带来自氧空位(VO)形成的浅施主能级和锌空位(VZn)形成的浅受主能级之间的复合;450 nm附近的蓝带来自电子从VO的浅施主能级到价带顶或锌填隙(Zni) 到价带顶或导带底到VZn的浅受主能级的复合.  相似文献   

16.
We present summarized data on the tunneling emission in p-n heterostructures based on GaN and on a series of cubic AIIIBV semiconductors, including GaAs, InP, GaSb, and (Ga, In)Sb. The emission in p-n heterostructures of the InGaN/AlGaN/GaN type in a spectral interval from 1.9 to 2.7 eV predominates at small currents (J<0.2 mA). The position of maximum ?ωmax in the spectrum approximately corresponds to the applied potential difference U:?ωmax=eU. The tunneling emission is related to a high electric field strength in GaN-based heterostructures. The radiative recombination probability is higher in the structures with piezoelectric fields. The observed spectra are compared to the spectra of tunneling emission from light-emitting diodes based on GaAs, InP, and GaSb. The experimental results for various semiconductors emitting in a broad energy range (0.5–2.7 eV) are described by the equation ?ωmax=eU=0.5–2.7 eV.  相似文献   

17.
To analyze the electronic structure and optical properties of (N, Ga) codoped ZnO, the parameters such as band structure, density of states, dielectric constant, absorption and reflection spectra of pure ZnO, N–Ga and 2N–Ga codoped ZnO were calculated by using first-principle method based on DFT (Density Functional Theory). The results demonstrated that the band gap of (N, Ga) codoped ZnO narrows, and 2N–Ga codoping can obtain a high-quality and more stable p-type ZnO. Compared with pure ZnO, the real and imaginary part of dielectric function of (N, Ga) codoped ZnO move toward a lower energy side; in ultraviolet region, the absorption spectrum reduces greatly, and the blue shift of reflectivity spectrum is observed; while in infrared region, the reflectivity spectrum of 2N–Ga codoped ZnO is twice that of pure ZnO or N–Ga codoped ZnO. The results provided certain theoretical reference for the study of ZnO-based transparent conductive thin films.  相似文献   

18.
The effects of annealing temperature on the structural and optical properties of ZnO films grown on Si (100) substrates by sol-gel spin-coating are investigated. The structural and optical properties are characterized by x-ray diffraction, scanning electron microscopy and photoluminescence spectra. X-ray diffraction analysis shows the crystal quality of ZnO films becomes better after annealing at high temperature. The grain size increases with the temperature increasing. It is found that the tensile stress in the plane of ZnO films first increases and then decreases with the annealing temperature increasing, reaching the maximum value of 1.8 GPa at 700℃. PL spectra of ZnO films annealed at various temperatures consists of a near band edge emission around 380 nm and visible emissions due to the electronic defects, which are related to deep level emissions, such as oxide antisite (OZn), interstitial oxygen (Oi), interstitial zinc (Zni) and zinc vacancy (VZn^-), which are generated during annealing process. The evolution of defects is analyzed by PL spectra based on the energy of the electronic transitions.  相似文献   

19.
Thin films of pseudoamorphous GaN (a-nc-GaN), as well as of its alloys with indium, InxGa1−x N (x=0.04, 0.16), were prepared by magnetron sputtering of a metallic target in the plasma of a reactive nitrogen and argon mixture. The a-nc-GaN films were codoped by the Zn acceptor impurity and a set of rare-earth metal (REM) dopants, namely, Ce, Tb, Er, Sm, and Eu. Photoluminescence (PL) spectra excited by a nitrogen laser with wavelength λ=337 nm at room temperature and 77 K were measured for all compositions and a set of impurities. It was shown that the high-energy PL edge of the pseudoamorphous (a-nc) GaN matrix lies at the same energy as that of the crystalline (epitaxial) c-GaN. As in c-GaN, the Zn acceptor impurity stimulates blue luminescence; however, the PL spectrum is substantially more diffuse, with practically no temperature quenching of the PL present. Indium doping in an amount of 16 at. % results in strong PL with a diffuse peak at 2.1–2.2 eV; the PL of the alloy exhibits temperature quenching as high as a factor of three to four in the interval 77–300 K. The decay time of the PL response increases up to 50 μs. RE impurities enter the amorphous GaN host as trivalent ions and produce narrow-band (except Ce) high-intensity spectra, thus indicating both a high solubility of RE impurities in a-nc-GaN and the generation of an effective crystal field (by the GaN anion sublattice) whose local symmetry makes the intracenter f-f transitions partly allowed. __________ Translated from Fizika Tverdogo Tela, Vol. 45, No. 3, 2003, pp. 395–402. Original Russian Text Copyright ? 2003 by Andreev.  相似文献   

20.
纳米ZnO薄膜可见发射机制研究   总被引:12,自引:5,他引:7  
宋国利  孙凯霞 《光子学报》2006,35(3):389-393
利用溶胶-凝胶法 (Sol-Gel)制备了纳米ZnO薄膜,获得了高强的近紫外发射室温下测量了样品的光致发光谱(PL )、吸收谱(ABS)、X射线衍射谱(XRD).X射线衍射(XRD)的结果表明:纳米ZnO薄膜呈多晶态,具有六角纤锌矿结构和良好的C轴取向;发现随退火温度升高,(002)衍射峰强度显著增强,衍射峰的半高宽(FWHM)减小、纳米颗粒的粒径增大.由吸收谱(ABS)给出了样品室温下带隙宽度为3.30 eV.在PL谱中观察到二个荧光发射带,一个是中心波长位于392 nm附近强而尖的紫带,另一个是519 nm附近弱而宽的绿带研究了不同退火温度样品的光致发光峰值强度的变化关系,发现随退火温度升高,紫带峰值强度增强、绿带峰值强度减弱,均近似呈线性变化.证实了纳米ZnO薄膜绿光发射主要来自氧空位(Vo)形成的浅施主能级与锌空位(VZn)形成的浅受主能级之间的复合,或氧空位(Vo)形成的深施主能级上的电子至价带顶的跃迁;紫带来自于导带中的电子与价带中的空位形成的激子复合.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号