首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
PurposeZero padding is a well-studied interpolation technique that improves image visualization without increasing image resolution. This interpolation is often performed as a last step before images are displayed on clinical workstations. Here, we seek to demonstrate the importance of zero padding before rather than after performing non-linear post-processing algorithms, such as Quantitative Susceptibility Mapping (QSM). To do so, we evaluate apparent spatial resolution, relative error and depiction of multiple sclerosis (MS) lesions on images that were zero padded prior to, in the middle of, and after the application of the QSM algorithm.Materials and MethodsHigh resolution gradient echo (GRE) data were acquired on twenty MS patients, from which low resolution data were derived using k-space cropping. Pre-, mid-, and post-zero padded QSM images were reconstructed from these low resolution data by zero padding prior to field mapping, after field mapping, and after susceptibility mapping, respectively. Using high resolution QSM as the gold standard, apparent spatial resolution, relative error, and image quality of the pre-, mid-, and post-zero padded QSM images were measured and compared.ResultsBoth the accuracy and apparent spatial resolution of the pre-zero padded QSM was higher than that of mid-zero padded QSM (p < 0.001; p < 0.001), which was higher than that of post-zero padded QSM (p < 0.001; p < 0.001). The image quality of pre-zero padded reconstructions was higher than that of mid- and post-zero padded reconstructions (p = 0.004; p < 0.001).ConclusionZero padding of the complex GRE data prior to nonlinear susceptibility mapping improves image accuracy and apparent resolution compared to zero padding afterwards. It also provides better delineation of MS lesion geometry, which may improve lesion subclassification and disease monitoring in MS patients.  相似文献   

2.
To see improvements in the imaging performance near biomaterial implants we assessed a multispectral fully phase-encoded turbo spin-echo (ms3D-PE-TSE) sequence for artifact reduction capabilities and scan time efficiency in simulation and phantom experiments.For this purpose, ms3D-PE-TSE and ms3D-TSE sequences were implemented to obtain multispectral images (± 20 kHz) of a cobalt-chromium (CoCr) knee implant embedded in agarose. In addition, a knee implant computer model and the acquired ms3D-PE-TSE images were used to investigate the possibilities for scan time acceleration using field-of-view (FOV) reduction for off-resonance frequency bins and compressed sensing reconstructions of undersampled data. Both acceleration methods were combined to acquire a + 10 kHz frequency bin in a second experiment.The obtained ms3D-PE-TSE images showed no susceptibility related artifacts, while ms3D-TSE images suffered from hyper-intensity artifacts. The limitations of ms3D-TSE were apparent in the far off-resonance regions (±[10–20] kHz) located close to the implant. The scan time calculations showed that ms3D-PE-TSE can be applied in a clinically relevant timeframe (~ 12 min), when omitting the three central frequency bins. The feasibility of CS acceleration for ms3D-PE-TSE was demonstrated using retrospective reconstructions before combining CS and rFOV imaging to decrease the scan time for the + 10 kHz frequency bin from ~ 10.9 min to ~ 3.5 min, while also increasing the spatial resolution fourfold. The temporally resolved signal of ms3D-PE-TSE proved to be useful to decrease the intensity ripples after sum-of-squares reconstructions and increase the signal-to-noise ratio.The presented results suggest that the scan time limitations of ms3D-PE-TSE can be sufficiently addressed when focusing on signal acquisitions in the direct vicinity of metal implants. Because these regions cannot be measured with existing multispectral methods, the presented ms3D-PE-TSE method may enable the detection of inflammation or (pseudo-)tumors in locations close to the implant.  相似文献   

3.
Imaging of light atoms has always been a challenge in high-resolution electron microscopy. Image resolution is mainly limited by lens aberrations, especially the spherical aberration of the objective lens. Image deconvolution could correct for the image distortion by lens aberrations and restore the structure projection, the resolution of which is limited by the information limit of the microscope. Electron diffraction unrestricted by lens aberrations could overcome this resolution limit. Here we show a combination of electron diffraction and image deconvolution to reveal simultaneously the atomic columns of O and considerably heavier Sm at a very close distance (1.17 Å) in iron-based superconductor SmFeAsO0.85F0.15 using a conventional 200 kV electron microscope. The approach used here, starting from an image and an electron diffraction pattern, has an advantage for those radiation-sensitive samples. Besides, it can be applied to simultaneously imaging light and heavy atoms, even though they have a big difference in atomic number and a much smaller atomic distance than the microscope resolution.  相似文献   

4.
The formation of Mg-induced quasi-one-dimensional atomic wires on a Si(557) surface was studied by low energy electron diffraction (LEED), scanning tunneling microscopy (STM), and first-principles calculations. The atomic wires were produced on the Si(557) surface without faceting when heated to 330 ?C. The atomic wires had a × 5 period along the wires, as observed by LEED. STM images showed the existence of three kinds of atomic wires in a unit cell: an atomic wire located at the step edge and the others on the terrace. Interestingly, alternative double and triple modulations resulting in the × 5 period was observed at the atomic wire located at the step edge. Among the variety of atomic structure models available, the one based on a honeycomb-chain-channel model, which is that of a metal/Si(111)-(3 × 1) surface, reproduced the STM images well and was relatively stable energetically.  相似文献   

5.
《Ultrasonics sonochemistry》2014,21(6):2122-2130
The formation of metallic particulates from erosion was investigated by running a series of transducers at various frequencies in water. Two low frequency transducer sonotrodes were run for 7.5 h at 18 kHz and 20 kHz. Three high frequency plates operating at megasonic frequencies of 0.4 MHz, 1 MHz, and 2 MHz were run over a 7 days period. Electrical conductivity and pH of the solution were measured before and after each run. A portion of the non-sonicated and treated water was partially evaporated to achieve an 80-fold concentration of particles and then sieved through nano-filters of 0.1 μm, 0.05 μm, and 0.01 μm. An aliquot of the evaporated liquid was also completely dried on strips of carbon tape to determine the presence of finer particles post sieving. An aliquot was analyzed for detection of 11 trace elements by Inductively Coupled Plasma Mass Spectroscopy (ICPMS). The filters and carbon tapes were analyzed by FE-SEM imaging to track the presence of metals by EDS (Energy Dispersive Spectroscopy) and measure the particle size and approximate composition of individual particles detected. Light microscopy visualization was used to calculate the area occupied by the particles present in each filter and high resolution photography was used for visualization of sonotrode surfaces. The roughness of all transducers before and after sonication was tested through profilometry. No evidence of formation of nano-particles was found at any tested frequency. High amounts of metallic micron-sized particles at 18 kHz and 20 kHz formed within a day, while after 7 day runs only a few metallic micro particles were detected above 0.4 MHz. Erosion was corroborated by an increase in roughness in the 20 kHz tip after ultrasound. The elemental analysis showed that metal leach occurred but values remained below accepted drinking water limits, even after excessively long exposure to ultrasound. With the proviso that the particles measured here were only characterized in two dimensions and could be nanoparticulate in terms of the third dimension, this research suggests that there are no serious health implications resulting from the formation of nanoparticles under the evaluation conditions. Therefore, high frequency transducer plates can be safely operated in direct contact with foods. However, due to significant production of metallic micro-particulates, redesign of lower frequency sonotrodes and reaction chambers is advised to enable operation in various food processing direct-contact applications.  相似文献   

6.
Acoustic cavitation energy distributions were investigated for various frequencies such as 35, 72, 110 and 170 kHz in a large-scale sonoreactor. The energy analyses were conducted in three-dimensions and the highest and most stable cavitation energy distribution was obtained not in 35 kHz but in 72 kHz. However, the half-cavitation-energy distance was larger in the case of 35 kHz ultrasound than in the case of 72 kHz, demonstrating that cavitation energy for one cycle was higher for a lower frequency. This discrepancy was due to the large surface area of the cavitation-energy-meter probe. In addition, 110 and 170 kHz ultrasound showed a very low and poor cavitation energy distribution. Therefore larger input power was required to optimize the use of higher frequency ultrasound in the sonoreactor with long-irradiation distance. The relationship between cavitation energy and sonochemical efficiency using potassium iodide (KI) dosimetry was best fitted quadratically. From 7.77 × 10?10 to 4.42 × 10?9 mol/J of sonochemical efficiency was evaluated for the cavitation energy from 31.76 to 103. 67 W. In addition, the cavitation energy attenuation was estimated under the assumption that cavitation energy measured in this study would be equivalent to sound intensity, resulting in 0.10, 0.18 and 2.44 m?1 of the attenuation coefficient (α) for 35, 72 and 110 kHz, respectively. Furthermore, α/(frequency)2 was not constant, as some previous studies have suggested.  相似文献   

7.
PurposeTo evaluate the use of the double-echo steady-state (DESS) sequence for acquiring high-resolution breast images with diffusion and T2 weighting.Materials and MethodsPhantom scans were used to verify the T2 and diffusion weighting of the DESS sequence. Image distortion was evaluated in volunteers by comparing DESS images and conventional diffusion-weighted images (DWI) to spoiled gradient-echo images. The DESS sequence was added to a standard clinical protocol, and the resulting patient images were used to evaluate overall image quality and image contrast in lesions.ResultsThe diffusion weighting of the DESS sequence can be easily modulated by changing the spoiler gradient area and flip angle. Radiologists rated DESS images as having higher resolution and less distortion than conventional DWI. Lesion-to-tissue contrast ratios are strongly correlated between DWI and DESS images (R = 0.83) and between T2-weighted fast spin-echo and DESS images (R = 0.80).ConclusionThe DESS sequence is able to acquire high-resolution 3D diffusion- and T2-weighted images in short scan times, with image quality that facilitates morphological assessment of lesions.  相似文献   

8.
This paper proposes a frequency compounding method to reduce speckle interferences, where a concentric annular type high-frequency dual element transducer is used to broaden the bandwidth of an imaging system. In frequency compounding methods, frequency division is carried out to obtain sub-band images containing uncorrelated speckles, which sacrifices axial resolution. Therefore, frequency compounding often deteriorates the target-detecting capability, quantified by the total signal-to-noise ratio (SNR), when the speckle’s SNR (SSNR) is not improved as much as the degraded axial resolution. However, this could be avoided if the effective bandwidth required for frequency compounding is increased. The primary goal of the proposed approach, hence, is to improve SSNR by a factor of two under the condition where axial resolution is degraded by a factor of less than two, which indicates the total SNR improvement to higher than 40% compared to that of an original image. Since the method here employs a dual element transducer operating at 20 and 40 MHz, the effective bandwidth necessary for frequency compounding becomes broadened. By dividing each spectrum of RF samples from both elements into two sub-bands, this method eventually enables four sets of the sub-band samples to contain uncorrelated speckles. This causes the axial resolution to be reduced by a factor of as low as 1.85, which means that this method would improve total SNR by at least 47%. An in vitro experiment on an excised pig eye was performed to validate the proposed approach, and the results showed that the SSNR was improved from 2.081 ± 0.365 in the original image to 4.206 ± 0.635 in the final compounding image.  相似文献   

9.
Ultrasonic frequencies of 20 kHz, 382 kHz, 584 kHz, 862 kHz (and 998 kHz) have been compared with regard to energy output and hydroxyl radical formation utilising the salicylic acid dosimeter. The 862 kHz frequency inputs 6 times the number of Watts into water, as measured by calorimetry, with the other frequencies having roughly the same value under very similar conditions. A plausible explanation involving acoustic fountain formation is proposed although enhanced coupling between this frequency and water cannot be discounted. Using the salicylic acid dosimeter and inputting virtually the same Wattages it is established that 862 kHz is around 10% more efficient at generating hydroxyl radicals than the 382 kHz but both of these are far more effective than the other frequencies. Also, it is found that as temperature increases to 42 °C then the total dihydroxybenzoic acid (Total DHBA) produced is virtually identical for 382 kHz and 862 kHz, though 582 kHz is substantially lower, when the power levels are set at approximately 9 W for all systems. An equivalent power level of 9 W could not be obtained for the 998 kHz transducer so a direct comparison could not be made in this instance. These results have implications for the optimum frequencies chosen for both Advanced Oxidation Processes (AOPs) and organic synthesis augmented by ultrasound.  相似文献   

10.
Micro-spot two-photon photoemission (micro-2PPE) spectroscopy is used to probe unoccupied electronic levels at sub-monolayer (ML) films of lead phthalocyanine (PbPc) on graphite (HOPG). The high-energy resolution (30 meV) 2PPE spectra with high-lateral resolution (0.4 μm) show well-resolved features due to molecule-derived occupied/unoccupied levels and the image potential state (IPS). The surface images based on photoemission from the highest occupied molecular orbital (HOMO) become laterally uniform after an annealing procedure. By contrast, the images based on the peak due to the lowest unoccupied molecular orbital (LUMO) and the next LUMO (LUMO + 1) are laterally inhomogeneous even after the annealing. The IPS peak is broadened to higher energy by 0.3 eV for sub-ML films and becomes sharp when a 1 ML film is formed. The broadening indicates that the electron in the IPS is scattered by molecules within the mean free path in the range from 1 to 10 nm. PbPc molecules are randomly distributed including nm-clusters. The LUMO and LUMO + 1 levels are stabilized as the cluster size increases. The inhomogeneity of the surface image due to the LUMO + 1 peak arises from the size distribution of the nm-clusters. The present results demonstrate that the unoccupied levels are more sensitive to the environment than the occupied levels.  相似文献   

11.
We developed a very sensitive high-frequency carrier-type thin film sensor with a sub-pT resolution using a transmission line. The sensor element consists of Cu conductor with a meander pattern (20 mm in length, 0.8 mm in width, and 18 μm in thickness), a ground plane, and amorphous CoNbZr film (4 μm in thickness). The amplitude modulation technique was employed to enhance the magnetic field resolution for measurement of the high-frequency field (499 kHz), a resolution of 7.10×10?13 T/Hz1/2 being achieved, when we applied an AC magnetic field at 499 kHz. The phase detection technique was applied for measurement of the low frequency field (around 1 Hz). A small phase change was detected using a dual mixer time difference method. A high phase change of 130°/Oe was observed. A magnetic field resolution of 1.35×10?12 T/Hz1/2 was obtained when a small AC field at 1 Hz was applied. We applied the sensor for magnetocardiogram (MCG) measurement using the phase detection technique. We succeeded in measuring the MCG signal including typical QRS and T waves, and compared the MCG with a simultaneously obtained conventional electrocardiogram (ECG) signal.  相似文献   

12.
Ultrasound in the 20–1000 kHz range show unique propagation characteristics in fluid media and possess energy that can break down fruit matrices to facilitate the extraction of valuable bioactive compounds. Red raspberries carry significant amounts of specific antioxidants, including ellagitannins and anthocyanins that are important for human health. The objective of this study was to investigate the effects of ultrasound frequencies associated with cavitation (20 kHz) and microstreaming (490 and 986 kHz) on total antioxidant activity (AOA), total phenolics content (TPC), and total monomeric anthocyanin content (ACY) of red raspberry puree prepared from crushed berries. The pureed fruit was subjected to high-intensity (20 kHz) and higher frequency-low intensity (490 and 986 kHz) ultrasound for 30 min. The temperature of treated purees increased to a maximum of 56 °C with 986 kHz. Sonication at 20 and 490 kHz significantly (p < 0.05) affected the AOA, ACY, and TPC of red raspberry puree, while 986 kHz had no significant effect on ACY and AOA (p < 0.05). In all cases, ultrasound treatment had significant and positive effect on at least one of the measured parameters up to 30 min. Sonication beyond 10 min (and up to 30 min) using 20 kHz either produced no change or caused a drop in AOA and ACY. However, for 986 and 20 kHz, TPC, increased by 10% and 9.5%, respectively after 30 min (p < 0.05) compared to the control. At 20 kHz, AOA and ACY increased by 17.3% and 12.6% after 10 min. It was demonstrated that 20 kHz ultrasound treatment, when limited to 10 min, was the most effective for extraction of bioactive compounds in red raspberry compared to 490 and 986 kHz although the effect could be similar at the higher frequencies if different amplitudes are used.  相似文献   

13.
《Ultrasonics》2013,53(1):53-64
The goal of this paper is to quantitatively study effects of phase aberration and noise on high-frame-rate (HFR) imaging using a set of traditional and new parameters. These parameters include the traditional −6-dB lateral resolution, and new parameters called the energy ratio (ER) and the sidelobe ratio (SR). ER is the ratio between the total energy of sidelobe and the total energy of mainlobe of a point spread function (PSF) of an imaging system. SR is the ratio between the peak value of the sidelobe and the peak value of the mainlobe of the PSF. In the paper, both simulation and experiment are conducted for a quantitative assessment and comparison of the effects of phase aberration and noise on the HFR and the conventional delay-and-sum (D&S) imaging methods with the set of parameters. In the HFR imaging method, steered plane waves (SPWs) and limited-diffraction beams (LDBs) are used in transmission, and received signals are processed with the Fast Fourier Transform to reconstruct images. In the D&S imaging method, beams focused at a fixed depth are used in transmission and dynamically focused beams are used in reception for image reconstruction.The simulation results show that the average differences between the −6-dB lateral beam widths of the HFR imaging and the D&S imaging methods are −0.1337 mm for SPW and −0.1481 mm for LDB, which means that the HFR imaging method has a higher lateral image resolution than the D&S imaging method since the values are negative. In experiments, the average differences are also negative, i.e., −0.2804 mm for SPW and −0.3365 mm for LDB. The results for the changes of ER and SR between the HFR and the D&S imaging methods have negative values, too. After introducing phase aberration and noise, both simulations and experiments show that the HFR imaging method has also less change in the −6-dB lateral resolution, ER, and SR as compared to the conventional D&S imaging method. This means that the HFR imaging method is less sensitive to the phase aberration and noise.Based on the study of the new parameters on the HFR and the D&S imaging methods, it is expected that the new parameters can also be applied to assess quality of other imaging methods.  相似文献   

14.
To take invisibility and restoration quality into account, this paper proposes an alterable-capacity watermarking scheme. For each block of size 8 × 8 pixels, the alterable-length code is generated based on the roughness of it. The alterable-length watermark generated by the alterable-length code is divided into three parts and embedded in other three blocks based on the secret key. The authenticity of each block is determined by comparing the watermark reconstructed by the block content and the corresponding extracted watermark. To improve the quality of recovered images, two copies of the significant-code of each block are embedded in different blocks and the image inpainting method is adopted to recover the tampered blocks whose significant-code embedded in other blocks is destroyed. The alterable-payload watermark preserves adequate information of image blocks especially for texture images with as few bits as possible and takes into account invisibility, security and restoration quality. Experimental results demonstrate that the proposed scheme improves the quality of watermarked and reconstructed images and is resilient to the known forgery attacks.  相似文献   

15.
Resolution reduction by a diffraction limit becomes severe with an increase in the wavelength of an electron at a relatively low accelerating voltage. For maintaining atomic resolution at a low accelerating voltage, a larger convergence angle with aberration correction is required. The developed aberration corrector, which compensates for higher-order aberration, can expand the uniform phase angle. Sub-angstrom imaging of a Ge [1 1 2] specimen with a narrow energy spread obtained by a cold field emission gun at 60 kV was performed using the aberration corrector. We achieved a resolution of 82 pm for a Ge–Ge dumbbell structure image by high angle annular dark-field imaging.  相似文献   

16.
《Ultrasonics》2013,53(1):150-156
Broken wires often occur at multiple locations in the same wire of a strand due to the recovery length, which is defined as the length of the wire taking up its full share of the axial load from the break point. The detection of broken-wire flaws at multiple locations along the same wire is investigated using guided waves below 400 kHz. Herein, a sample with three broken-wire flaws in the same wire is analyzed using magnetostrictive guided waves. Our data show that three flaws are found using the low-frequency guided waves (50 kHz) but only one flaw is found using the high-frequency guided waves (320 kHz). By analyzing the reflection and transmission coefficients at the three different flaws, we observe that the energy exchange decreases as the frequency increases along the same propagating distance. Hence, the recovery length for elastic waves, the length of the wire taking up its full share of elastic-wave energy from the break point, is observed. The recovery length for elastic waves in prestressing strands increases with the frequency. To detect prestressing strands using magnetostrictive guided waves, several one-broken-wire flaws at different locations can be distinguished from in different wires or the same wire by employing both low-frequency waves and high-frequency waves. Nevertheless, we cannot identify in which wire the flaws are located because the magnetostrictive sensor analyzes the whole strand.  相似文献   

17.
In the present work, the influence of gas addition is investigated on both sonoluminescence (SL) and radical formation at 47 and 248 kHz. The frequencies chosen in this study generate two distinct bubble types, allowing to generalize the conclusions for other ultrasonic reactors. In this case, 47 kHz provides transient bubbles, while stable ones dominate at 248 kHz. For both bubble types, the hydroxyl radical and SL yield under gas addition followed the sequence: Ar > Air > N2 >> CO2. A comprehensive interpretation is given for these results, based on a combination of thermal gas properties, chemical reactions occurring within the cavitation bubble, and the amount of bubbles. Furthermore, in the cases where argon, air and nitrogen were bubbled, a reasonable correlation existed between the OH-radical yield and the SL signal, being most pronounced under stable cavitation at 248 kHz. Presuming that SL and OH originate from different bubble populations, the results indicate that both populations respond similarly to a change in acoustic power and dissolved gas. Consequently, in the presence of non-volatile pollutants that do not quench SL, sonoluminescence can be used as an online tool to qualitatively monitor radical formation.  相似文献   

18.
Amorphous wires with composition Fe77.5Si7.5B15 exhibit a very peculiar magnetization process characterized by a single and quite large Barkhausen jump. This gives rise to a squared hysteresis loop at a critical magnetic field. The bistable behaviour, widely studied in wires with typical length of 10 cm and diameter of 125 μm, appears above a length of about 7 cm in straight wires and disappears for curvature radius within the range 2–12 cm in bent wires. In this work it is shown that bistability occurs in bent wires, whatever their curvature is, provided the wires are long enough. To this purpose spiral-shaped samples with several turns are considered. However, when the wire length is not a integer number of turns the magnetization reverses through many large Barkhausen jumps. In this condition, varying the measuring temperature can activate the energy barriers for the jumps.  相似文献   

19.
High resolution 3D MRI was used to study contrast agent distribution and leakage in normal mouse mammary glands and glands containing in situ cancer after intra-ductal injection. Five female FVB/N mice (~ 19 weeks old) with no detectable mammary cancer and eight C3(1) SV40 Tag virgin female mice (~ 15 weeks old) with extensive in situ cancer were studied. A 34G, 45° tip Hamilton needle with a 25μL Hamilton syringe was inserted into the tip of the nipple and approximately 15 μL of a Gadodiamide was injected slowly over 1 min into the nipple and throughout the duct on one side of the inguinal gland. Following injection, the mouse was placed in a 9.4 T MRI scanner, and a series of high resolution 3D T1-weighted images was acquired with a temporal resolution of 9.1 min to follow contrast agent leakage from the ducts. The first image was acquired at about 12 min after injection. Ductal enhancement regions detected in images acquired between 12 and 21 min after contrast agent injection was five times smaller in SV40 mouse mammary ducts (p < 0.001) than in non-cancerous FVB/N mouse mammary ducts, perhaps due to rapid washout of contrast agent from the SV40 ducts. The contrast agent washout rate measured between 12 min and 90 min after injection was ~ 20% faster (p < 0.004) in SV40 mammary ducts than in FVB/N mammary ducts. These results may be due to higher permeability of the SV40 ducts, likely due to the presence of in situ cancers. Therefore, increased permeability of ducts may indicate early stage breast cancers.  相似文献   

20.
Planar extrinsic sulfur-doped silicon detectors for infrared (IR) semiconductor-discharge gap image converters intended for use in high-speed thermography of remote objects have been developed. The detectors were fabricated by high-temperature diffusion of sulfur into silicon wafers from the vapor phase. The dependence of doping efficiency on the sulfur vapor pressure in the course of diffusion was analyzed. The detector fabrication technology was optimized to meet the specific requirements for their operation in the microdischarge devices considered. The detectors were tested in a laboratory setup comprising a blackbody source of IR light, an image converter, and a pulsed CCD camera for recording the converted images. The converter equipped with the detector can provide imaging of objects heated to a temperature, Tmin  200 °C, with a temporal resolution on the order of 10?6 s and spatial resolution of about 5 lines/mm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号