首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 623 毫秒
1.
Infrared spectra at 300 and 77 K and Raman spectra at 300 K of the valpromide (Vpd), N‐substituted derivatives, N‐ethylvalpromide (Etvpd), N‐isopropylvalpromide (Ipvpd) and the N,N‐disubstituted derivative, N,N‐dimethylvalpromide (Dmvpd) with antiepileptic activity, have been measured and analyzed with results derived from computational chemistry calculation. In agreement with theoretical predictions, experimental data indicate that while in Etvpd, Dmvpd and Ipvpd there are four different conformational co‐existing components (Etvpd: TTCG+, TCCG, TTTC, G+G+C G+; Dmvpd: TTCC, GTTA+, G+ATC, G+AC A+; Ipvpd: TTCT, TCCT, TCCC, G TTT) in the Vpd there are only three distinct stable conformations of C1 symmetry group: TTC, TCT, G+G+T. Based on the accuracy of the B3LYP calculation, with the 6‐31 + G** basis set estimated by comparison between the predicted values of the vibrational modes and the available experimental data, we performed a structural and vibrational study of the amide group in the Vpd and their derivatives. We found that small nonplanarity deviations of C(O)N backbone induce significant changes on the structural and spectroscopic properties. These are not compatible with the decreasing of the resonance effect as it is produced when the twisting around the C(O) N increases. From the Natural Bond Orbital (NBO) analysis the existence of stabilizing electrostatic interactions of type C H···O/N and C H···H N/C, which induce significant structural changes and a complex electronic redistribution of charge on the π‐system in those structures becomes evident. We view this as a consequence of the filled electron density change Lewis‐type NBOs type lpO1, 2, lpN1, σ(C H)N acyl and empty non‐Lewis NBOs type σ*(C H)N acyl, σ*N H. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
Solvation structures of the lithium cation and tetrafluorobrate anion in dimethyl sulfoxide (DMSO) were investigated by Raman spectroscopy and ab initio calculations at various salt concentrations. The SO and C S stretching bands were used to monitor the structural change of the solvation shell. It has been shown that the solvation number of Li+, calculated by the changes in intensities of the C S asymmetric and symmetric stretching bands, is consistent with the value predicted by ab initio calculations. The wavenumber shift of the C H stretching band is suggested to be the result of the anion solvation and the dissociation of the associated DMSO molecules. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
The structure and Franck–Condon region of protochlorophyllide a, a precursor in the biosynthesis of chlorophyll and substrate of the light‐regulated enzyme protochlorophyllide oxidoreductase (POR), were investigated by Raman and resonance Raman (RR) spectroscopy. The spectroscopic results are compared to the spectra of the structurally closely related porphyrin model compound magnesium octaethylporphyrin (MgOEP), and interpreted on the basis of density functional theory (DFT) calculations. It is shown that the electronic properties of the two porphyrin macrocycles are affected by different vibrational coupling modes, resulting in a higher absorption cross section of protochlorophyllide a in the visible spectral region. Furthermore, a comparison of the Fourier transform (FT)‐Raman and RR spectra of protochlorophyllide a indicates the modes that are resonantly enhanced upon excitation. Based on vibrational normal mode calculations, these modes include C C ring‐breathing and CC stretching vibrations of the porphyrin macrocycle. In particular, the strong band at 1703 cm−1 can be attributed to the CO carbonyl vibration of the cyclopentanone ring, which is attached in conjugation to the π‐electron path of the porphyrin ring system. The enhancement of that mode upon electronically resonant excitation is discussed in the light of the reaction model suggested for the photoreduction of protochlorophyllide a in the POR. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
Here, we report the nature of new di‐α‐amino (L1–L3) and α‐amino‐α‐hydroxyphosphinic (L4–L6) acids, which are considered potential inhibitors of the aminopeptidase N, adsorbed on a colloidal silver surface by means of surface‐enhanced Raman scattering (SERS) spectroscopy. In order to reveal the adsorption mechanism of these species from their SERS spectra, Fourier‐transform Raman (FT‐RS) spectra of these nonadsorbed molecules were measured. By examining the enhancement, shift in wavenumbers, and changes in breadth of the SERS bands due to the adsorption process, we revealed that the tilted compounds interact with the colloidal silver substrate mainly through the benzene ring, amino group, and phosphinic moiety in the following way. The benzene ring of L2 and L3 is ‘standing up’ on the colloidal silver surface, and the C N bond is almost vertical to it, while the tilt angle between the O PO bond and this surface is greater than 45°. On the other hand, for L1, L4, and L5, the aromatic ring and C N bond are arranged more or less tilted, and the tilt angle between the O PO bond and the silver substrate is smaller than 45°. The elongation of the bond to the benzene ring, the L6 case, produces an almost horizontal orientation of the benzene ring and the O PO bond on the silver nanoparticles. For these ligands, the complement inhibition IC50 tested in vitro using porcine kidney leucine aminopeptidase was correlated mainly with the behavior of the O PO and C CH N fragments on the silver surface. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
The inclusion compounds of α‐, β‐ and γ‐cyclodextrins (α‐CD, β‐CD and γ‐CD) with trans‐cinnamic acid (t‐CIA), 3‐hydroxy‐trans‐cinnamic acid (t‐3OHCIA), 4‐hydroxy‐trans‐cinnamic acid (t‐4OHCIA) and 3,4‐dihydroxy‐trans‐cinnamic acid (t‐3,4OHCIA) were prepared and characterized, in the solid state, by means of thermogravimetry and Raman spectroscopy. The effects of the inclusion process on the guest molecules and on the hydrogen bond interactions of the guest were studied by monitoring sensitive vibrational modes, such as CO, CC and ring C H stretching modes. By combining Raman and TG data with ab initio calculations and information from CSD database on similar compounds, inclusion geometries for the different compounds are proposed. The size of the host cavity and the maximization of host/guest hydrogen‐bonding contacts appear to be the main factors determining the inclusion geometries. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
FT‐IR and FT‐Raman spectra of 4‐chloro‐2‐(4‐bromophenylcarbamoyl)phenyl acetate were recorded and analyzed. The vibrational wavenumbers and corresponding vibrational assignments were examined theoretically using the Gaussian03 set of quantum chemistry codes. The red shift of the NH stretching wavenumber in the infrared (IR) spectrum from the computed wavenumber indicates the weakening of the NH bond resulting in proton transfer to the neighbouring oxygen atom. The simultaneous IR and Raman activations of the CO stretching mode give the charge transfer interaction through a π‐conjugated path. Optimized geometrical parameters of the title compound are in agreement with similar reported structures. From the optimized structure, it is clear that the hydrogen bonding decreases the double bond character of CO bond and increases the double bond character of the C N bonds. The first hyperpolarizability, predicted infrared intensities and Raman activities are reported. The calculated first hyperpolarizability is comparable with the reported values of similar derivatives and is an attractive object for future studies of non‐linear optics. The assignments of the normal modes are done by potential energy distribution (PED) calculations. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
In this work, the Raman spectra of furan, furfuryl alcohol (FA), furfural, hydroxymethylfurfural (HMF), and levulinic acid were obtained in the 500 to 4000 cm−1 spectral region at room temperature. Vibrational wavenumbers were calculated for these compounds with the B3LYP method using the 6‐31 + G(2df,p) basis set. The experimentally determined CC and C C wavenumbers for furan and furan derivatives were in good agreement with the calculated wavenumbers without scaling factor, while the calculated CO and C H wavenumbers at ∼1660 and 3000 cm−1, respectively, showed larger deviations from the measured ones. The Raman spectra for furan and furan derivatives showed intense CC bands, whereas the levulinic acid spectrum showed intense C H vibrations with broad doublet CO bands. We also found that an empirical method based on the chemical structure similarities is able to predict the HMF Raman spectrum from the combined furfural and FA spectra. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
The importance of hydrogen‐bond formation in the molecular packing arrangements of two anhydrous forms of nitrofurantoin is investigated, combining computational methods and spectroscopic data. The overall results indicate, as expected, that the vibrational modes related to the CO, N H and C H groups are strongly affected by intermolecular hydrogen‐bond formation. Moreover, the importance of weak C‐H···O interactions in conferring additional stability to molecular associations in biological systems is evidenced in this study. The complete assignment of the Raman and infrared spectra of both polymorphs is accomplished by means of a computationally based methodology, which accounts for the effects of intermolecular interactions in the crystal. The vibrational shifts due to crystal packing interactions are evaluated from DFT calculations for a set of suitable molecular pairs, using the B3LYP/6‐31G* approach. This methodology provides an answer to the current demand for a reliable and complete assignment of the vibrational spectra of pharmaceutically active compounds such as nitrofurantoin. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
The Fourier transform Raman (FT‐Raman) and Fourier transform infrared (FT‐IR) spectra of 2‐[acetyl(4‐bromophenyl)carbamoyl]‐4‐chlorophenyl acetate were studied. The vibrational wavenumbers were examined theoretically using the Gaussian03 set of quantum chemistry codes, and the normal modes were assigned by potential energy distribution (PED) calculations. The simultaneous Raman and infrared (IR) activations of the CO stretching mode in the carbamoyl moiety show a charge transfer interaction through a π‐conjugated path. From the optimized structure, it is clear that the hydrogen bonding decreases the double bond character of the CO bond and increases the double bond character of the C N bonds. The first hyperpolarizability and predicted IR intensities are reported. The calculated first hyperpolarizability is comparable with the reported values of similar structures, which makes this compound an attractive object for future studies of nonlinear optics. Optimized geometrical parameters of the compound are in agreement with similar reported structures. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
A‐ and B‐band resonance Raman spectra were acquired for ethylene trithiocarbonate in cyclohexane solution. The results indicate that the S3 state structural dynamics is mostly along vibrational motions of the CS stretch υ11, while the S4 state one has motions mainly via the S C S symmetric stretch υ18, CS stretch υ11, and the H C H rock + S C S antisymmetric stretch υ14 reaction coordinates. The very different excited state structural dynamics were briefly discussed in terms of vibronic couplings using local symmetry point group. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
The Raman spectrum of budesonide is reported for the first time, and molecular assignments are proposed on the basis of ab initio BLYP DFT calculations with a 6‐31 G* basis set and vibrational wavenumbers predicted on a quasi‐harmonic approximation. Comparison with previously published infrared data has explained several spectral features, and the relative band intensities in the CO and CC stretching regions are interpreted. The results from this study provide data that can be used for the preparative process monitoring of budesonide, an important steroidal pharmaceutical in various dosage forms, and its interaction with excipients and other components. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
Raman spectra of acetic acid (AA), N,N‐dimethyl formamide (DMF) and their binary mixtures with varying mole fraction of the AA were recorded in the region 300–1750 cm−1 to investigate the formation of self‐associated dimer and hydrogen‐bonded complexes in a mixed system. The observed spectral features of the CO stretching mode suggest the formation of self‐association with a smaller aggregation size, and also indicate the presence of repulsive interactions between AA and DMF. The existence of two kinds of AA molecules (free and complex) is elucidated from the splitting of the OC O deformation mode. The intermolecular hydrogen‐bond formation and the possibility of attractive interaction between AA and DMF are also examined from the observed spectral features in the CCO symmetric stretching mode of AA, and CN symmetric stretching mode of DMF. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

13.
Raman spectra of the Cl3CCHO/CCl4 and Cl3CCHO/C6D12 binary systems were recorded as a function of the mole fraction. Features originating from self‐aggregates of chloral (trichloroethanal, trichloroacetaldehyde—TCAA) molecules were detected in different spectral regions. The most pronounced changes were observed in the vicinity of the ν(CO) and ν(C H) stretching vibration bands. Using two‐dimensional correlation spectroscopy (2D‐COS), evolving‐factor analysis (EFA) and multivariate curve resolution (MCR), dimer bands were identified, and their positions were determined. The ν(C H) stretching vibration band in dimers was blue‐shifted by nearly 18 cm−1, whereas the ν(CO) dimer band was red‐shifted by more than 5 cm−1. For these bands, the observed shifts were accompanied by an almost twofold change in the bandwidth, from approximately 19 and 6 cm−1 for dilute solutions (x = 0.05) to 36.6 and 11.5 cm−1, respectively, in pure TCAA. The formation of dimers was confirmed by multivariate analysis of the Raman spectra of chloral recorded as a function of temperature. Analogous analysis of dichloroacetyl chloride (DCAC) spectra gave an 8.9 cm−1 blue shift for the ν(C H) vibration band and − 5.5/− 10.1 cm−1 shifts for the ν(CO) stretching vibrations of the two conformers present. To facilitate the interpretation of experimental findings, the optimized geometries and vibrational wavenumbers of the Cl3CCHO/HCl2CCClO molecules and (Cl3CCHO)2/(HCl2CCClO)2 dimers were calculated at the B3LYP/6‐311 + + G(3df,3pd) level. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
Dimethyl 1,3‐dithiole‐2‐thione‐4,5‐dicarboxylate (DDTD) was synthesized and characterized using NMR, Fourier transform (FT)‐Raman, Fourier transform‐infrared (FT‐IR) and UV spectroscopies. Resonance Raman spectra (RRs) were obtained with 341.5, 354.7 and 368.9 nm excitation wavelengths and density functional calculations were carried out to elucidate the π (S C S) →π* (S C S) electronic transitions and the RRs of DDTD in cyclohexane solution. The RRs indicate that the Franck–Condon region photo dynamics have a multidimensional character with motion predominantly along the CS stretch and the C S symmetric stretch modes in the five‐member heterocycle. A preliminary resonance Raman intensity analysis was carried out and the results for DDTD were compared with previously reported results for 1,3‐dithiole‐2‐thione (DTT). Differences and similarities of the spectra in terms of molecular symmetry and electron density are also discussed. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
The red dye Sudan I was investigated by Raman spectroscopy using different excitation wavelengths (1064, 532 and 244 nm). A calculation of the Raman spectrum based on quantum mechanical ab initio density functional theory (DFT) was made using the RB3LYP method with the 3‐21G and 6‐311 + G(d,p) basis sets. The vibrations in the region 1600–1000 cm−1 were found to comprise various mixed modes including in‐plane stretching and bending of various C C, N N, C N and C O bonds and angles in the molecule. Below ∼900 cm−1, the out‐of‐plane bending modes were dominant. The central hydrazo chromophore of the Sudan I molecule was involved in the majority of the vibrations through NN and C N stretching and various bending modes. Low‐intensity bands in the lower wavenumber range (at about 721, 616, 463 and 218 cm−1) were selectively enhanced by the resonance Raman effect when using the 532 nm excitation line. Comparison was made with other azo dyes in the literature on natural, abundant plant pigments. The results show that there is a possibility in foodstuff analysis to distinguish Sudan I from other dyes by using Raman spectroscopy with more than one laser wavelength for resonance enhancement of the different bands Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
The solid to smecticG (SmG) phase transition in a Schiff base liquid crystalline compound, terepthal‐bis‐heptylaniline (TB7A), is monitored in situ by temperature‐dependent Raman microspectroscopy, using the band of a C H in‐plane bending mode as a marker. Contrary to the earlier report of a sudden wavenumber shift, the in situ measurement shows very clearly that a new Raman band at ∼1160 cm−1 appears at the Crystal II → SmG transition. The dynamics of this phase transition is discussed in terms of a triple well potential below 210 K and a double well potential above 210 K. The phase transition essentially takes place as a result of intra‐molecular rotation about the long molecular axis. The optimization energy at various fixed dihedral angles, ( C C CN ) are calculated using density functional theory (DFT) at the B3LYP/6‐31G* level of theory. The relative energy at each dihedral angle is calculated relative to optimization energy obtained without any constraints and plotted as a function of dihedral angle (Φ) between the adjacent phenyl ring planes, which also shows a double well potential at room temperature. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
Raman spectroscopic studies of a range of naturally occurring carotenoids in over 50 specimens of plant tissue and a range of standard extracts have been undertaken, and the characteristic bands of CC and C C stretching and C CH bending have been recorded. Comparison of the spectroscopic data with the chemical assignment of the carotenoids from chemical extraction of the plant tissues reveals that there is a problem in the interpretation of the spectroscopic data which can be attributed to significant wavenumber shifts, particularly in the CC stretching band wavenumber, for carotenoids in the organic tissues arising from molecular interactions between the carotenoid and its host matrix. The simple identification of carotenoids in biological tissues on the basis of comparison with the standard spectra of extracted material must be made with caution; the progressive shift in wavenumber of the CC stretching band in the conjugated polyene chain of carotenoids with the number of CC groups, and hence the identification of the carotenoid, cannot be unambiguously interpreted for the range of materials studied here. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
Raman spectra of 3CHBT in unoriented form were recorded at 14 different temperature measurements in the range 25–55 °C, which covers the crystal → nematic (N) phase transition, and the Raman signatures of the phase transition were identified. The wavenumber shifts and linewidth changes of Raman marker bands with varying temperature were determined. The assignments of important vibrational modes of 3CHBT were also made using the experimentally observed Raman and infrared spectra, calculated wavenumbers, and potential energy distribution. The DFT calculations using the B3LYP method employing 6‐31G functional were performed for geometry optimization and vibrational spectra of monomer and dimer of 3CHBT. The analysis of the vibrational bands, especially the variation of their peak position as a function of temperature in two different spectral regions, 1150–1275 cm−1 and 1950–2300 cm−1, is discussed in detail. Both the linewidth and peak position of the ( C H ) in‐plane bending and ν(NCS) modes, which give Raman signatures of the crystal → N phase transition, are discussed in detail. The molecular dynamics of this transition has also been discussed. We propose the co‐existence of two types of dimers, one in parallel and the other in antiparallel arrangement, while going to the nematic phase. The structure of the nematic phase in bulk has also been proposed in terms of these dimers. The red shift of the ν(NCS) band and blue shift of almost all other ring modes show increased intermolecular interaction between the aromatic rings and decreased intermolecular interaction between two  NCS groups in the nematic phase. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
By means of Raman spectroscopy coupled with density functional theory (DFT) calculations and perturbation correlation moving window two‐dimensional correlation spectroscopy intermolecular interactions were assessed in mixtures of ionic liquid (IL) 1‐n‐butyl‐3‐methylimidazolium hexafluorophosphate (BmimPF6) with polar aprotic solvent γ‐butyrolactone (γ‐BL) over the entire range of compositions. The symmetrical P―F stretching vibration of the IL anion was found to be insensitive to the changes in mixture concentration in contrast to the CO stretching vibration of the γ‐BL and the imidazolium ring C―H stretching vibrations of the IL cation. Each of these vibrational profiles was decomposed in various spectral contributions, and their number was rationalized by the results of quantum‐chemical calculations and/or previous controversial published data. Progressive redshift of the ring C―H stretching wavenumbers was referred to pronounced solvation of the cation at the imidazolium ring site accompanied with H‐bond formation. This was especially pronounced at IL mole fraction less than 0.18. Complicated variations in the intensities of the individual contributions of the CO profile were treated as a manifestation of the changing with concentration pattern of the intermolecular interactions. The self‐association of γ‐BL molecules and distinct cation solvation as dominant intermolecular interactions at low IL content are replaced with weaker cation solvation and ion association at high concentrations of IL. Possible representative molecular structures were proposed on the basis of DFT calculations. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
Chloramphenicol (CLM), originally derived from the bacterium Streptomyces venezuelae, is an inhibitor of bacterial ribosomal peptidyl transferase activity. The near infrared Fourier transform (NIR‐FT) Raman, surface‐enhanced Raman spectroscopy (SERS) and Fourier transform infrared (FT‐IR) spectral analyses of CLM, a potential antibacterial drug for the treatment of typhoid fever, were carried out along with density functional computations. The vibrational spectral analysis reveals that the CH2 asymmetric and symmetric stretching modes are shifted to higher wavenumbers than the computed values, owing to the electronic effects resulting from induction of methylene group with the adjacent electronegative atom. The lowering of CO stretching wavenumber is due to the presence of the strong electronegative atom, nitrogen, attached to the carbonyl carbon, causing large degree of molecular π‐electron delocalization and redistribution of electrons, which weakens the CO bond. The absence of a C H stretching vibration and the observed C H out‐of‐plane bending modes suggest that the CLM molecule may be adsorbed in a flat orientation with respect to the silver surface. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号