首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
The first conformational analysis of 3‐silathiane and its C‐substituted derivatives, namely, 3,3‐dimethyl‐3‐silathiane 1 , 2,3,3‐trimethyl‐3‐silathiane 2 , and 2‐trimethylsilyl‐3,3‐dimethyl‐3‐silathiane 3 was performed by using dynamic NMR spectroscopy and B3LYP/6‐311G(d,p) quantum chemical calculations. From coalescence temperatures, ring inversion barriers ΔG for 1 and 2 were estimated to be 6.3 and 6.8 kcal/mol, respectively. These values are considerably lower than that of thiacyclohexane (9.4 kcal/mol) but slightly higher than the one of 1,1‐dimethylsilacyclohexane (5.5 kcal/mol). The conformational free energy for the methyl group in 2 (?ΔG° = 0.35 kcal/mol) derived from low‐temperature 13C NMR data is fairly consistent with the calculated value. For compound 2 , theoretical calculations give ΔE value close to zero for the equilibrium between the 2 ‐Meax and 2 ‐Meeq conformers. The calculated equatorial preference of the trimethylsilyl group in 3 is much more pronounced (?ΔG° = 1.8 kcal/mol) and the predominance of the 3 ‐SiMe3 eq conformer at room temperature was confirmed by the simulated 1H NMR and 2D NOESY spectra. The effect of the 2‐substituent on the structural parameters of 2 and 3 is discussed. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
Nanocrystalline Mn‐doped zinc oxides Zn1−xMnxO (x = 0–0.10) were synthesized by the sol–gel technique at low temperature. The calcination temperature of the as‐prepared powder was found at 350 °C using differential thermal analysis. A thermogravimetric analysis showed that there is a mass loss in the as‐prepared powder till 350 °C and an almost constant mass till 800 °C. The X‐ray diffraction patterns of investigated nanopowders calcined at 350 °C correspond to the hexagonal ZnO structure without any foreign impurities. The average grain size of the nanocrystal that was observed around ∼25–40 nm from transmission electron microscopy matched well with the crystallite size calculated from the line shape of X‐ray diffraction. The chemical bonding structure in Zn1−xMnxO nanopowders was examined using X‐ray photoelectron spectroscopy techniques, which indicate substitution of Mn2+ ions into Zn2+ sites in ZnO lattice. Micro Raman spectroscopy confirmed the insertion of Mn ions in the ZnO host matrix, and similar wurtzite structure of Zn1−xMnxO (x < 10%) nanocrystals. Temperature‐dependent Raman spectra of the nanocrystals displayed suppression of luminescence and enhancement in full width at half maximum in pure ZnO nanocrystals with increase in temperature, which suggests an enhancement in particle size at elevated temperature. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
The amorphous polymer surfaces of polystyrene (PS, M n=200 kg/mol, M w/M n=1.05) and poly(methyl methacrylate) (PMMA, M n=51.9 kg/mol, M w/M n≤1.07) were brought into contact at 21°C to form PS‐PS (for 54 days) and PMMA‐PMMA auto‐adhesive joints (for 11 days). After contact at that temperature corresponding to T g‐bulk ?81°C for PS and to T g‐bulk–88°C for PMMA, where T g‐bulk is the calorimetric glass transition temperature of the bulk sample, the bonded interfaces were fractured and their surfaces were analyzed by atomic force microscopy (AFM). The surface roughness, R q, of the fractured interfaces was larger by a factor of 3–4 than was that of the free PS and PMMA surfaces aged for the same period of time. A similar increase in R q was found by comparison of the free PS surface aged at T g‐bulk+15°C for 1 h and of the surface of the PS‐PS interface fractured after healing at T g‐bulk+15°C for 1 h. These observations, indicative of the deformation of the fractured interfaces, suggest the occurrence of some mass transfer across the interface even below T g‐bulk ?80°C.  相似文献   

4.
This work investigates the evolution of the crystal structure of microwave‐hydrothermal synthesized Ba(Y1/2Nb1/2)O3 powders as a function of firing temperature by Raman spectroscopy. The samples were produced at 200 °C and fired at temperatures ranging from 600 to 1600 °C. Raman spectra were obtained at room temperature for all samples and the results showed that materials fired at 1600 °C exhibited tetragonal (I4/m or ) structure, whereas those fired at lower temperatures exhibited the triclinic (P1 or Ci1) structure. The results were compared with those observed for ceramics obtained by conventional solid‐state methods. It is believed that the lowering of the symmetry verified in materials fired below 1600 °C is a consequence of the local disorder of Y+3 and Nb+5 ions in octahedral sites. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
Abstract

Films of high‐molecular‐weight amorphous polystyrene (PS, M w = 225 kg/mol, M w/M n = 3, T g‐bulk = 97°C, where T g‐bulk is the glass transition temperature of the bulk sample) and poly(methyl methacrylate) (PMMA, M w = 87 kg/mol, M w/M n = 2, T g‐bulk = 109°C) were brought into contact in a lap‐shear joint geometry at a constant healing temperature T h, between 44°C and 114°C, for 1 or 24 hr and submitted to tensile loading on an Instron tester at ambient temperature. The development of the lap‐shear strength σ at an incompatible PS–PMMA interface has been followed in regard to those at compatible PS–PS and PMMA–PMMA interfaces. The values of strength for the incompatible PS–PMMA and compatible PMMA–PMMA interfaces were found to be close, both being smaller by a factor of 2 to 3 than the values of σ for the PS–PS interface developed after healing at the same conditions. This observation suggests that the development of the interfacial structure at the PS–PMMA interface is controlled by the slow component, i.e., PMMA. Bonding at the three interfaces investigated was mechanically detected after healing for 24 hr at T h = 44°C, i.e., well below T g‐bulks of PS and PMMA, with the observation of very close values of the lap‐shear strength for the three interfaces considered, 0.11–0.13 MPa. This result indicates that the incompatibility between the chain segments of PS and PMMA plays a negligible negative role in the interfacial bonding well below T g‐bulk.  相似文献   

6.
First‐order rate constants k1 for the trapping of various donor‐ and acceptor‐substituted benzhydrylium ions in mixtures of 1,1,1,3,3,3‐hexafluoro‐2‐propanol (HFIP) and water ranging from 50 to 99% HFIP (w/w) were determined by laser flash photolytic generation of benzhydrylium ions from benzhydryl triarylphosphonium salts in these solvents. From these rate constants, we derived the solvent‐specific reactivity parameters N1 and sN for HFIP/water mixtures as defined by the linear free energy relationship lg k1(20 °C) = sN(N1 + E). Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
Ciprofloxacin (CfH, C17H18FN3O3) crystallizes with 2‐thiobarbituric (H2tba) and barbituric acid (H2ba) in the aqueous solution to yield salt CfH2(Htba)·3H2O ( 1 ), salt cocrystal CfH2(Hba)(H2ba)·3H2O ( 2 ), and salt CfH2(Hba)·H2O ( 3 ). The compounds are structurally characterized by the X‐ray single‐crystal diffraction. The numerous intermolecular hydrogen bonds N–H?O and O–H?O formed by water molecules, Htba?/Hba? and CfH2+ ions, and H2ba molecules stabilize the crystal structures of 1 to 3 . Hydrogen bonds form a 2D plane network in the salts of 1 and 3 and a 3D network in the salt cocrystal of 2 . There are different π‐π interactions in 1 to 3 . The compounds have been characterized by powder X‐ray diffraction, thermogravimetry/differential scanning calorimetry, and Fourier transform infrared spectroscopy. The compounds dehydration ends at 130°C to 150°C, and their oxidative decomposition is observed in the range of 250°C to 275°C.  相似文献   

8.
A simple linear regression (Q equation) is devised to position solvolyses within the established SN2‐SN1 spectrum of solvolysis mechanisms. Using 2‐adamantyl tosylate as the SN1 model and methyl tosylate as the SN2 model, the equation is applied to solvolyses of ethyl, allyl, secondary alkyl and a range of substituted benzyl and benzoyl tosylates. Using 1‐adamantyl chloride as the SN1 model and methyl tosylate as the SN2 model, the equation is applied to solvolyses of substituted benzoyl chlorides in weakly nucleophilic media. In some instances, direct correlations with methyl tosylate were employed. Grunwald–Winstein l values and kinetic solvent isotope effects are also used to locate solvolyses within the spectrum of mechanisms. Product selectivities (S) for solvolyses at 50 °C of p‐nitrobenzyl tosylate in binary mixtures of alcohol–water and of alcohol–ethanol for five alcohols (methanol, ethanol, 1‐propanol and 2‐propanol and t‐butanol) are reported and show the expected order of solvent nucleophilicity (RCH2OH > R2CHOH > R3COH). The data support the original assignments establishing the NOTs scale of solvent nucleophilicity. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
An experimental approach was developed to determine the intrinsic thermolysis rate constants of the central carbon–carbon bond during the dl/meso isomerization of diethyl 2,3‐dicyano‐2,3‐di(p‐substituted phenyl)succinates (G=H, Me, OMe, Cl, and NO2) at temperatures ranging from 80 to 120 °C. The obtained rate constants are significantly affected by the polarity of the para substituents, in sharp contrast to their negligible effects on the dl/meso isomerization equilibrium constants. Moreover, the substituent effects on the activation enthalpies can be linearly correlated with the Hammett substituent resonance constants and the homolytic dissociation enthalpies (bond dissociation energies) of the benzylic C–H bonds of ethyl 2‐cyano‐2‐(p‐substituted phenyl)acetates. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
Samples of bismuth lead vanadium oxide (BIPBVOX) (Bi2V1–xPbxO5.5–x/2) singly substituted system in the composition range 0.05 ≤ x ≤ 0.20 were prepared by sol–gel synthesis route. Structural investigations were carried out by using a combination of differential thermal analysis (DTA) and powder X-ray diffraction (PXRD) technique. Energy dispersive X-ray spectroscopy analysis (EDXA) of doped samples was carried out to predict the sample purity and doping concentration. Transitions, α?β, β?γ and γ′?γ were detected by XRD, DTA and variation in the Arrhenius plots of conductivity. The ionic conductivity was measured by AC impedance spectroscopy. The solid solutions with composition x ≤ 0.07 undergo α?β phase transition, at 329 °C and β?γ phase transition at 419 °C. The highly conducting γ′-phase was effectively stabilized at room temperature for compositions with x ≥ 0.17 whose thermal stability increases with Pb content. At 300 °C, the highest value of conductivity 6.234 × 10?5 S cm?1 was obtained for composition x = 0.15 and at 600 °C the highest value of conductivity 0.65 S cm?1 is observed for x = 0.17. AC impedance plots reveal that the conductivity is mainly due to the grain contribution to oxide ion conductivity.  相似文献   

11.
The carbonyl infrared stretching frequencies for 57 meta‐, para‐ and ortho‐substituted phenyl benzoates, C6H5CO2C6H4‐X and alkylbenzoates, C6H5CO2R, containing besides neutral substituents the charged substituents in phenoxy and alkoxy part in dimethyl sulfoxide (DMSO) have been recorded. The carbonyl stretching frequencies, νCO, for meta‐ and para‐substituted phenyl esters of benzoic acids in the case of neutral substituents were found to correlate well with the substituent constants, σ°. The νCO values for ortho derivatives correlated with the inductive substituent constants, σI, only. The values of constants for charged substituents, σ°±, calculated on the basis of the νCO and the 13C NMR chemical shifts, δCO, in DMSO agree well with the σ°± values for the corresponding ion pairs reported by Hoefnagel and Wepster and those determined from the log k values of the alkaline hydrolysis in 4.4 M NaCl solution at 50 °C. Thus, the values of substituent constants for ion pairs of charged substituents estimated on the basis of aqueous data could be successfully used in non‐aqueous solution (DMSO) simultaneously with neutral substituents in case the charged substituents were not completely ionized and are in ion pair form. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
Abstract

Thermal cross‐linking of poly(vinyl methyl ether) (PVME) in the absence of cross‐linking agent, was detected rheologically. The linear viscoelastic properties of PVME were found to be greatly changed by the onset of the cross‐linking process. The viscoelastic material functions, such as dynamic shear moduli, G′ and G″, complex shear viscosity, η*, and loss tangent, tan δ, were found to be sensitive to the structure changes during the cross‐linking process and the formation of a three‐dimensional polymer network. At the onset temperature of the cross‐linking process, an abrupt increase in G′, G″, and η* (several orders of magnitude) during dynamic temperature ramps (2°C/min heating rate) was observed with some frequency dependence. The temperature dependence of tan δ was found to be frequency independent at the gel‐point, T gel, that is, the crossover in tan δ regardless of the value of frequency can be taken as an accurate method for determination of T gel. The coincidence of G′ and G″ at the gel‐point cannot be considered a general method for evaluation of T gel due to its high frequency dependence, that is, T gel determined from the crossover of G′ and G″ in the dynamic temperature ramp at 1 rad/sec is about 20°C less than at 100 rad/sec. Furthermore, a dramatic increase in η0 above the minimum (“v” shape) was observed at T = T gel in agreement with the value obtained from tan δ vs. T (190°C). The time–temperature‐superposition principle was found to be valid only for temperatures lower than the T gel (190°C); the principle failed at T ≥ 190°C. This was clearly seen in the low‐frequency region as a deviation from the terminal slope in the G′ curve. Similar behavior was observed in the modified Cole–Cole analyses (G″ vs. G′) that is, the curves start to deviate at 190°C.  相似文献   

13.
The cerium modified sodium bismuth titanate (Na0.5Bi4.5Ti4O15, NBT) piezoelectric ceramics have been prepared by using the conventional mixed oxide method. X‐ray diffraction analysis revealed that the cerium modified NBT ceramics have a pure four‐layer Aurivillius phase structure. The piezoelectric activity of NBT ceramics was found significantly improved by the modification of cerium. The Curie temperature Tc, and piezoelectric coefficient d33 for the NBT ceramics with 0.50 wt% cerium modification were found to be 655 °C, and 28 pC/N respectively. The Curie temperature gradually decreased from 668 °C to 653 °C with the increase of cerium modification. The dielectric spectroscopy showed that the samples possess stable piezoelectric properties, demonstrating practical potential that for high temperature applications. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
The second‐order rate constants k (dm3mol?1s?1) for alkaline hydrolysis of meta‐, para‐ and ortho‐substituted phenyl esters of benzoic acid, C6H5CO2C6H4‐X, in aqueous 50.9% (v/v) acetonitrile have been measured spectrophotometrically at 25 °C. In substituted phenyl benzoates, C6H5CO2C6H4‐X, the substituent effects log kX ? log kH in aqueous 50.9% acetonitrile at 25 °C for para, meta and ortho derivatives showed good correlations with the Taft and Charton equations, respectively. Using the log k values for various media at 25 °C, the variation of the ortho substituent effect with solvent was found to be precisely described with the following equation: Δlog kortho = log kortho ? log kH = 1.57σI + 0.93σ°R + 1.08EsB ? 0.030ΔEσI ? 0.069ΔEσ°R, where ΔE is the solvent electrophilicity, ΔE = ES ? EH20, characterizing the hydrogen‐bond donating power of the solvent. We found that the experimental log k values for ortho‐, para‐ and meta‐substituted phenyl benzoates in aqueous 50.9% acetonitrile at 25 °C, determined in the present work, precisely coincided with the log k values predicted with the equation (log kX)calc = (log kHAN)exp + (Δlog kX)calc where the substituent effect (Δlog kX)calc was calculated from equation describing the variation of the substituent effect with the solvent electrophilicity parameter, using for aqueous 50.9% CH3CN the solvent electrophilicity parameter, ΔE = ?5.84. In going from water to aqueous 50.9% CH3CN, the ortho inductive term grows twice less as compared with the para polar effect. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
Crack‐free (100–x) SiO2x SnO2 glass‐ceramic monoliths have been prepared by the sol–gel method obtaining for the first time SnO2 concentrations of 20% with annealing at 1100 °C. Heat‐treatment resulted in the formation and growth of SnO2 nanocrystals within the silica matrices. Combined use of Fourier transform–Raman spectroscopy and in situ high‐temperature X‐Ray diffraction shows that SnO2 particles begin to crystallize in the cassiterite‐type phase at 80 °C and that their average apparent size remains around 7 nm, even after annealing at 1100 °C. Nanocrystal sizes and size distributions determined by low‐wavenumber Raman are in good agreement with those obtained from transmission electron microscopy measurements. Results indicate that the formation and the growth of SnO2 nanocrystals impose a residual porosity in the silica matrix. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
Comparison of 13C NMR of C = N bond chemical shifts δC(C = N) in substituted N‐(phenyl‐ethylene)‐anilines XArC(Me) = NArY (XPEAYs) with that in substituted N‐(benzylidene)‐anilines XArCH = NArY (XBAYs) was carried out. The δC(C = N) of 61 samples of XPEAYs were measured, and the substituent effect on their δC(C = N) were investigated. The results show the factors affecting the δC(C = N) of XPEAYs are quite different from that of XBAYs. A penta‐parameter correlation equation was obtained for the 61 compounds, which has correlation coefficient 0.9922 and standard error 0.12 ppm. The result indicates that, in XPEAYs, the inductive effects of substituents X and Y are major factors affecting the δC(C = N), while the conjugative effect of them have very little effect on the δC(C = N) and can be ignored. The substituent‐specific cross‐interaction effects between X and Y and between Me of C = N bond and substituent Y are important factors affecting the δC(C = N). Also, the excited‐state substituent parameter of substitute Y has certain contribution to the δC(C = N). Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
Abstract

Healing of symmetric interfaces of amorphous anionically polymerized high‐ and ultrahigh‐molecular weight (HMW and UHMW, respectively) polystyrene (PS) in a range of the weight‐average molecular weight M w from 102.5 (M w/M n = 1.05) to 1110 kg/mol (M w/M n = 1.15) was followed at a constant healing temperature, T h, well below the glass transition temperature of the polymer bulk [T g‐bulk = 105–106°C as measured by differential scanning calorimeter (DSC)]. The bonded interfaces were shear fractured in tension on an Instron tester at ambient temperature. Autoadhesion at symmetric HMW PS–HMW PS and UHMW PS–UHMW PS interfaces was detected mechanically after healing at T h = 38°C for 107 hr, and even at 24°C (for longer healing times). The occurrence of autoadhesion between the surfaces of the UHMW PS with M w = 1110 kg/mol at 24°C implies that the glass transition temperature at the interface, T g‐interface, of this polymer was a least lower: by 82°C than its DSC T g‐bulk, by 30–40°C than the Vogel temperature, T —the lowest theoretical value of a kinetic T g‐bulk at infinite long time—and by 20°C than T 2 (a “true” thermodynamic T g‐bulk corresponding to a second‐order phase transition temperature). To our knowledge, this is the first observation of such nature, which gives further evidence of the lowering of the T g at polymeric surfaces and the persistence of this effect at early stages of healing of polymer–polymer interfaces.  相似文献   

18.
The kinetics and mechanism of the nucleophilic vinylic substitution of dialkyl (alkoxymethylidene)malonates (alkyl: methyl, ethyl) and (ethoxymethylidene)malononitrile with substituted hydrazines and anilines R1–NH2 (R1: (CH3)2N, CH3NH, NH2, C6H5NH, CH3CONH, 4‐CH3C6H4SO2NH, 3‐ and 4‐X‐C6H4; X: H, 4‐Br, 4‐CH3, 4‐CH3O, 3‐Cl) were studied at 25 °C in methanol. It was found that the reactions with all hydrazines (the only exception was the reaction of (ethoxymethylidene)malononitrile with N,N‐dimethylhydrazine) showed overall second‐order kinetics and kobs were linearly dependent on the hydrazine concentration which is consistent with the rate‐limiting attack of the hydrazine on the double bond of the substrate. Corresponding Brønsted plots are linear (without deviating N‐methyl and N,N‐dimethylhydrazine), and their slopes (βNuc) gradually increase from 0.59 to 0.71 which reflects gradually increasing order of the C–N bond formed in the transition state. The deviation of both methylated hydrazines is probably caused by the different site of nucleophilicity/basicity in these compounds (tertiary/secondary vs. primary nitrogen). A somewhat different situation was observed with the anilines (and once with N,N‐dimethylhydrazine) where parabolic dependences of the kinetics gradually changing to linear dependences as the concentration of nucleophile/base increases. The second‐order term in the nucleophile indicates the presence of a steady‐state intermediate ‐ most probably T±. Brønsted and Hammett plots gave βNuc = 1.08 and ρ = ?3.7 which is consistent with a late transition state whose structure resembles T±. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
The solvolysis rates of X‐substituted benzhydryltetrahydrothiophenium ions ( 1 ) in pure and aqueous alcohols were determined at 25 °C and compared with the rates of the corresponding benzhydryldimethylsulfonium ions ( 2 ). The linear free energy relationship equation log k = sf(Ef + Nf) has been used to relate quantitatively the leaving group abilities of tetrahydrothiophene (THT) and dimethyl sulfide (Me2S). It has been demonstrated that although generating a stronger base by heterolysis, substrates 1 solvolyze over lower barriers than 2 . Steric and electronic influences that determine the relative reactivities of sulfonium salts have been examined computationally at B3LYP level of theory by calculating the energy of exchange of electrofuges with different substituents between THT and dimethyl sulfide. Because of more efficiently delocalized positive charge in THT moiety, tetrahydrothiophenium ions are more stable than the corresponding dimethylsulfonium ions, regardless of an electrofuge. The Hammond–Leffler coefficient is negative (α < 0) for the rate determining heterolysis of sulfonium salts 1 and 2 . Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
The effect of acidity upon the rate of nitrosation of N‐benzyl,O‐methylhydroxylamine ( 3 ) in 1:1 (v/v) H2O/MeOH at 25 °C has been investigated. The pseudo‐first‐order rate constant (kobs) for loss of HNO2 as the limiting reagent decreases as [H3O+] increases. This is compatible with two parallel reaction channels (Scheme 2 ). One involves the direct reaction of the free hydroxylamine with HNO2 (k1 = 1.4 × 102 dm3 mol?1 s?1, 25 °C) and the other involves the reaction of the free hydroxylamine with NO+ (k2 = 5.9 × 109 dm3 mol?1 s?1). In contrast, there is only a very slight increase in kobs with increasing [H3O+] for nitrosation of N,O‐dimethylhydroxylamine ( 4 ) in dilute aqueous solution at 25 °C to give N‐nitroso‐dimethylhydroxylamine, 5 . This also fits a two‐channel mechanism (Scheme 3 ). Again, one involves the nitrosation of the free base by NO+ (k2 = 8 × 109 dm3 mol?1 s?1, 25 °C) but the other channel now involves catalysis by chloride (k3 = 1.3 × 108 dm3 mol?1 s?1). Arising from these results, we propose an estimate of pKa ~ ?5 for protonated nitrous acid, (O = N? OH), which is appreciably different from the literature value of +1.7. The interconversion of cis and trans conformational isomers of 5 has been investigated by temperature‐dependent NMR spectroscopy in CDCl3, methanol‐d4, toluene‐d8 and dimethyl sulfoxide‐d6. Enthalpies and entropies of reaction and of activation have been determined and compared with computational values obtained at the B3LYP/6‐31G* level of theory. The cis form is slightly more stable at normal temperatures and no solvent effects upon the thermodynamics or kinetics of the conformational equilibrium were predicted computationally or detected experimentally. In addition, key geometric parameters and dipole moments have been calculated for the cis and trans forms, and for the lowest energy transition structure for their interconversion, in the gas phase and in chloroform. These results indicate electronic delocalisation in the ground states of 5 which is lost in the transition structure for their interconversion. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号