首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We discuss some of the basic theoretical aspects of current-carrying states in superconducting superlattices with tunnel barriers in the mesoscopic regime, when p0  1  a  ξ0(a is the superconducting layer thickness, p0is the Fermi momentum, ξ0is the BCS coherence length and  =  1). We establish the necessary conditions for the observation of the classical Josephson effect (with sinusoidal current–phase dependence) and derive self-consistent analytical expressions for the critical Josephson current. These expressions are proportional to the small factor a / ξ0and have unusual temperature dependence as compared with the single-junction case. For certain parameter values, the superconducting gap exhibits an exponential decrease due to pair-breaking effect of the supercurrent. The supercurrent can completely destroy the superconductivity of the system above a certain characteristic temperature T * . In this paper, we also study the effect of intrabarrier exchange interactions. We show that this effect is strongly enhanced compared with the single-junction case and can manifest itself in an exponential decrease of the critical temperature.  相似文献   

2.
This paper reports on the contact resistance (Rc) between carbon filler/natural rubber (NR) nanocomposite and gold ball: three varieties of nanocomposites were prepared from carbon black (CB) and two kinds of multi-walled carbon nanotubes (MWCNTs) with different diameter. Rc of MWCNT/NR nanocomposite was remarkably less than that of CB/NR nanocomposites. The relationship between Rc of MWCNT/NR nanocomposites and applied load was expressed in the formula, Rc=C·Pn (P: load, C and n: constant): for the MWCNTs (diameters of 13 nm)/NR and MWCNTs (diameters of 67 nm)/ NR nanocomposites, they were expressed as Rc=1724·P−0.6 and Rc=344·P−0.37, respectively. The former (MWCNT, ϕ13 nm) showed higher Rc than the latter (MWCNT, ϕ67 nm) over whole region of applied load. The mechanical hardness of the former was higher (90 HsA) than that of the latter (82 HsA). Therefore, the smaller contact area between the nanocomposite and gold ball of the former resulted in higher Rc. The apparent specific contact resistivity was calculated from the observed values of Rc and contact area: 130 Ω mm2 and 127 Ω mm2 for the former (MWCNT, ϕ13 nm) and the latter (MWCNT, ϕ67 nm), respectively.  相似文献   

3.
We discovered two new classes of superconductors in the course of material exploration for electronic-active oxides. One is 12CaO · 7Al2O3 crystal in which electrons accomodate in the crystallographic sub-nanometer-sized cavities. This material exhibiting metal–superconductor transition at 0.2 K is the first electride superconductor. The other is iron oxypnicitides with a layered structure. This superconductor is rather different from high Tc cuprates in several respects. The high Tc is emerged by doping carriers to the metallic parent phases which undergo crystallographic transition (tetra to ortho) and Pauli para to antiferromagnetic transition at ~150 K. The Tc is robust to impurity doping to the Fe sites or is induced by partial substitution of the Fe2+ sites with Co2+ or Ni2+. This article gives a brief summary of these discoveries and recent advances.  相似文献   

4.
Inelastic neutron scattering has been performed on powder sample of an iron-based superconductor BaFe2(As0.65P0.35)2 with superconducting transition temperature (Tc) = 30 K, whose superconducting (SC) order parameter is expected to have line node. In the normal state, constant-E scan of dynamical structure factor, S(Q, E), exhibits a peak structure centered at momentum transfer Q  1.20 Å?1, corresponding to antiferromagnetic wave vector. Below Tc, the redistribution of the magnetic spectral weight takes place, resulting in the formation of a peak at E  12 meV and a gap below 6 meV. The enhanced magnetic peak structure is ascribed to the spin resonance mode, evidencing sign change in the SC order parameter similar to other iron-based high-Tc superconductors. It suggests that fully-gapped s± symmetry dominates in this superconductor, which gives rise to high-Tc (=30 K) despite the nodal symmetry.  相似文献   

5.
We have prepared metal organic deposition (MOD)-YBCO thick films by repeating the coating-pyrolysis-crystallization procedure onto ~100-nm-thick evaporated and MOD templates. Surface morphology of the template was found to strongly affect the homoepitaxial growth of MOD-YBCO layers on the template; namely, the epitaxial growth of MOD-YBCO on the evaporated template was much easier than that on the MOD template. A 220-nm-thick epitaxial MOD-YBCO film was successfully prepared on the 100-nm-thick evaporated-YBCO template to obtain a 320-nm-thick YBCO film, which exhibited Jc = 2.44 MA/cm2 and Ic = 78 A/cm. The Ic value has significantly increased from 37 A/cm for the evaporated-template.  相似文献   

6.
We have developed long RE1Ba2Cu3O7?X (RE123) coated conductors with large current capacity by the ion beam assisted deposition (IBAD) and the pulsed laser deposition using hot wall heating (HW-PLD) technique. As a result, we could fabricate an 8 m-long Gd1Ba2Cu3O7?X (Gd123) coated wire with the minimum and maximum critical current (Ic) of 951 A/cm-w and 1003 A/cm-w at 77 K, 0 T, respectively, measured in 0.7 m-long sections by the standard 4-probe technique. Furthermore, we succeeded in preparation of over 600 m-long Gd123 coated wire with the uniform Ic distribution over 600 A/cm-w. It had average, maximum and minimum Ic of 665, 698, 609 A/cm-w, respectively. The n-values of the sample showed the maximum Ic and minimum Ic were 40 and 36, respectively. As a result, we set the new world record of Ic × L value as 374535 A m (= 609 A × 615 m). The in-field performance of this long wire was quite high as well; the minimum Ic exceeded 50 A/cm-w at 77 K, 3 T.  相似文献   

7.
Isoelectronic Tellurium (Te) substitution for Selenium (Se) in the tetragonal phase of FeSe (β-FeSe) increases the superconducting transition temperature (Tc) by applying a negative pressure on the lattice. However, the normal state resistivity increases and shows semi-metallic behavior for samples with higher Te concentration. With increasing Te concentration, the Tc increases and reaches a maximum for FeSe0.5Te0.5 and then decreases with further increase of Te. We have investigated the effect of Cobalt (Co) and Nickel (Ni) doping in FeSe0.5Te0.5 in the nominal composition range Fe1?xTMxSe0.5Te0.5 (TM = Co (x = 0.05, 0.1, 0.15, 0.2) and Ni (x = 0.05, 0.1)). Both Co and Ni doping suppress Tc and drives the system to metal–insulator transition. The in-plane (‘a’) and out-of-plane (‘c’) lattice constants decrease with increasing dopant concentration.  相似文献   

8.
We report the achievement of transport critical currents in Sr0.6K0.4Fe2As2 wires and tapes with a Tc = 34 K. The wires and tapes were fabricated through an in situ powder-in-tube process. Silver was used as a chemical addition as well as a sheath material. All the wire and tape samples have shown the ability to transport superconducting current. Critical current density Jc was enhanced upon silver addition, and at 4.2 K, a largest Jc of ~1200 A/cm2 (Ic = 9 A) was achieved for 20% silver added tapes, which is the highest in iron-based wires and tapes so far. The Jc is almost field independent between 1 T and 10 T, exhibiting a strong vortex pinning. Such a high transport critical current density is attributed to the weak reaction between the silver sheath and the superconducting core, as well as an improved connectivity between grains. We also identify a weak-link behavior from the apparent drop of Jc at low fields and a hysteretic phenomenon. Finally, we found that compared to Fe, Ta and Nb tubes, Ag was the best sheath material for the fabrication of high-performance 122 type pnictide wires and tapes.  相似文献   

9.
We have reported SmBa2Cu3Oy (SmBCO) films on single crystalline substrates prepared by low-temperature growth (LTG) technique. The LTG-SmBCO films showed high critical current densities in magnetic fields compared with conventional SmBCO films prepared by pulsed laser deposition (PLD) method. In this study, to enhance critical current (Ic) in magnetic field, we fabricated thick LTG-SmBCO films on metal substrates with ion-beam assisted deposition (IBAD)-MgO buffer and estimated the Ic and Jc in magnetic fields.All the SmBCO films showed c-axis orientation and cube-on-cube in-plane texture. Tc of the LTG-SmBCO films were 93.1–93.4 K. Jc and Ic of a 0.5 μm-thick SmBCO film were 3.0 MA/cm2 and 150 A/cm-width at 77 K in self-field, respectively. Those of a 2.0 μm-thick film were 1.6 MA/cm2 and 284 A/cm-width respectively. Although Ic increased with the film thickness increasing up to 2 μm, the Ic tended to be saturated in 300 A/cm-width. From a cross sectional TEM image of the SmBCO film, we recognized a-axis oriented grains and 45° grains and Cu–O precipitates. Because these undesired grains form dead layers, Ic saturated above a certain thickness. We achieved that Ic in magnetic fields of the LTG-SmBCO films with a thickness of 2.0 μm were 88 A/cm-width at 1 T and 28 A/cm-width at 3 T.  相似文献   

10.
Here we report on the successful synthesis of ErFeAsO-based superconductor by hydrogen doping using high-pressure (HP) synthesis technique. The ErFeAsO1?y target pellets were sandwiched between LaFeAsO0.8H0.8 pellets, which act as a hydrogen source. Hydrogen released from the hydrogen source soaks into the target pellets during HP synthesis and the target pellets crystallizes with the tetragonal crystal structure with the lattice constants a = 3.8219 Å and c = 8.2807 Å. The hydrogen doped sample ErFeAsO1?y(H) thus obtained shows superconducting critical temperatures (Tc) of 44.5 K and 42.5 K determined by onsets of resistive and diamagnetic transitions, respectively.  相似文献   

11.
Quantum effects in the dynamics of the Josephson phase difference in Josephson junctions with large electron transparency D are studied in the adiabatic regime, when the characteristic charging energyEC of the junction is much smaller than the superconducting energy gap Δ. In isolated junctions, quantum phase fluctuations are large and manifest themselves as Coulomb blockade of Cooper pair tunneling. The amplitude of the Coulomb blockade oscillations is calculated for single-mode junctions with arbitrary D. In particular, it is shown that the chiral anomaly completely suppresses Coulomb blockade in ballistic junctions with D =  1, and the suppression process at D   1 can be described as the Landau–Zener transition in imaginary time. In the regime when quantum phase fluctuations are small, they lead to quantum decay of supercurrent states due to macroscopic quantum tunneling of phase through the Josephson potential barrier. The decay rate is found in the nearly-ballistic junctions.  相似文献   

12.
Sm1+xBa2?xCu3+yO7?δ (SmBCO) films were directly deposited on the epi-MgO/IBAD-MgO/Y2O3/Al2O3/Hastelloy template by co-evaporation using the evaporation using drum in dual chambers (EDDC) system without the buffer layer in order to investigate the effect of the composition ratios on superconducting property, microstructure and texture of SmBCO film. The films with gradient composition ratios of Sm:Ba:Cu were deposited using a shield with an opening which was placed between the substrate and the boats. The highest Ic of 52 A (corresponding to Jc = 1.6 MA/cm2 and a thickness of 800 nm) was observed at 77 K in self field at a composition x = 0.01–0.05 and y = ?0.23 to ?0.46. When the composition ratio is outside this range, the Ic value rapidly decreased. The superconducting critical current was highly dependent on the composition ratio. As the composition ratio is farther away from that of the highest Ic, the SmBCO (1 0 3) peak intensity increased and the amount of a-axis oriented parts increased. A dense microstructure with round-shape grains was observed in the region showing the highest Ic. The optimum composition ratio can be found by analyzing films deposited with variable deposition rates of each depositing element.  相似文献   

13.
A reasonable cause of absence of hump structure in thermal conductivity of MgB2 below the superconducting transition temperature (Tc) lies in the appearance of multigap structure. The gaps of lower magnitude can be suppressed by defects so that this system becomes effectively a single-gap superconductor. When such a situation is created, it is hoped that thermal conductivity (κ) will show hump below Tc. Proceeding along these lines, a sample of MgB2 with a relatively higher residual resistivity ρo = 33.8 μΩ cm has been found to show a hump structure below Tc. The actual electronic thermal conductivity κel of this sample is less than that expected from the Wiedeman–Franz law by more than a factor of 2.6 in the considered temperature range.Modifying the Wiedeman–Franz law for the electronic contribution by replacing the Lorenz number L0 = 2.45 × 10?8 W Ω K?2 by an effective Lorenz number Leff (<L0) we have obtained two sets of κel, namely those with Leff = 0.1L0 and 0.2L0. Corresponding to these two sets of κel, two sets of the phonon thermal conductivity κph are obtained. κph has been analyzed in terms of an extended Bardeen–Rickayzen–Tewordt theory. The main result of this analysis is that the hump structure corresponds to a gap ratio of 3.5, and that large electron-point defect scattering is the main source of drastic reduction of the electronic thermal conductivity from that given by the usual Wiedeman–Franz law.  相似文献   

14.
The crystal structure and physical properties of BaFe2As2, BaCo2As2, and BaNi2As2 single crystals are surveyed. BaFe2As2 gives a magnetic and structural transition at TN = 132(1) K, BaCo2As2 is a paramagnetic metal, while BaNi2As2 has a structural phase transition at T0 = 131 K, followed by superconductivity below Tc = 0.69 K. The bulk superconductivity in Co-doped BaFe2As2 below Tc = 22 K is demonstrated by resistivity, magnetic susceptibility, and specific heat data. In contrast to the cuprates, the Fe-based system appears to tolerate considerable disorder in the transition metal layers. First principles calculations for BaFe1.84Co0.16As2 indicate the inter-band scattering due to Co is weak.  相似文献   

15.
A brief review of optical and Raman studies on the Fe-based superconductors is given, with special emphasis on the competing phenomenon in this system. Optical investigations on ReFeAsO (Re = rare-earth element) and AFe2As2 (A = alkaline-earth metal) families provide clear evidence for the gap formation in the broken symmetry states, including the partial gaps in the spin-density wave states of parent compounds, and the pairing gaps in the superconducting states for doped compounds. Especially, the superconducting gap has an s-wave pairing lineshape in hole-doped BaFe2As2. Optical phonons at zone center detected by Raman and infrared techniques are classified for several Fe-based compounds. Related issues, such as the electron–phonon coupling and the effect of spin-density wave and superconducting transitions on phonons, are also discussed. Meanwhile, open questions including the T-dependent mid-infrared peak at 0.6–0.7 eV, electronic correlation, and the similarities/differences between high-Tc cuprates and Fe-based superconductors are also briefly discussed. Important results from other experimental probes are compared with optical data to better understand the spin-density wave properties, the superconductivity, and the multi-band character in Fe-based compounds.  相似文献   

16.
17.
The critical current density Jc of some of the superconducting samples, calculated on the basis of the Bean’s model, shows negative curvature for low magnetic field with a downward bending near H = 0. To avoid this problem Kim’s expression of the critical current density, Jc = k/(H0 + H), where Jc has positive curvature for all H, has been employed by connecting the positive constants k and H0 with the features of the hysteresis loop of a superconductor. A relation between the full penetration field Hp and the magnetic field Hmin, at which the magnetization is minimum, is obtained from the Kim’s theory. Taking the value of Jc at H = Hp according to the actual loop width, as in the Bean’s theory, and at H = 0 according to an enhanced loop width due to the local internal field, values of k and H0 are obtained in terms of the magnetization values M+(?Hmin), M?(Hmin), M+(Hp) and M?(Hp). The resulting method of estimating Jc from the hysteresis loop turns out to be as simple as the Bean’s method.  相似文献   

18.
We report properties of the Zn-substituted polycrystalline superconductors BaFe1.87?xZnxCo0.13As2 (x = 0, 0.04, 0.06 and 0.08) prepared at ambient pressure condition. Electrical conductivity and magnetization measurements revealed that the superconductivity is suppressed by at most 2% substitution of Zn, which shows typical behavior of an anisotropically gaped superconductivity rather than an isotropically gaped superconductivity. With increasing the amount of Zn, weak change in superconductivity was observed. It is likely impossible to obtain BaFe1.87?xZnxCo0.13As2 crystals with x > 0.04 at ambient pressure condition. On the basis of the structural and the physical properties of the present system, we discuss a possible mechanism of the superconducting pairing.  相似文献   

19.
We have investigated intrinsic tunneling spectroscopy (ITS) with short-pulse bias to mesa structures consisting of several layers of intrinsic Josephson junction superlattices of Bi1.8Pb0.2Sr2CaCu2O8+δ(PbBi2212). Through ITS, the superconducting gap 2Δ = 75 meV (at 10 K) is obtained for a PbBi2212 crystal. The large 2Δ value corresponds to the underdoped property of Pb-free Bi2212, which is consistent with the ab-plane transport measurement results performed simultaneously. The normal tunneling resistance RN derived from the high bias region of the IV characteristics is significantly small in comparison with underdoped Bi2212. Moreover, Jc of PbBi2212 is less deviated from the Ambegaokar–Baratoff value than the case of underdoped Bi2212. It is interpreted that the Pb substitution makes the tunnel barrier lower, resulting in a reduced anisotropy and a high Jc even with a lower doping.  相似文献   

20.
Low-energy spin excitations have been studied on polycrystalline LaFeAsO1?xFx samples by inelastic neutron scattering. The Q-integrated dynamical spin susceptibility χ″(ω) of the superconducting samples is found to be comparable to that of the magnetically ordered parent sample. On the other hand, χ″(ω) almost vanishes at x = 0.158, where the superconducting transition temperature Tc is suppressed to 7 K. In addition, χ″(ω) in optimally doped LaFeAsO0.918F0.082 with Tc = 29 K exhibits a spin resonance mode. The peak energy, Eres, when scaled by kBTc is similar to the value of about 4.7 reported in other high-Tc iron-based superconductors. This result suggests that there is intimate relationship between the dynamical spin susceptibility and high-Tc superconductivity in iron-based superconductors, and is consistent with a nesting condition between Fermi surfaces at the Γ and M points.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号