首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Fourier transform (FT)‐Raman and Fourier transform infrared (FT‐IR) spectra of 3‐{[(4‐fluorophenyl)methylene]amino}‐2‐phenylquinazolin‐4(3H)‐one were recorded and analyzed. The vibrational wavenumbers of the title compound were computed using the B3LYP/6‐31G* basis and compared with the experimental data. The prepared compound was identified by NMR and mass spectra. The simultaneous IR and Raman activation of the CO stretching mode shows a charge transfer interaction through a π‐conjugated path. The first hyperpolarizability and infrared intensities are reported. The assignments of the normal modes are done by potential energy distribution (PED) calculations. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
Fourier transform infrared (FT‐IR) and FT‐Raman spectra of 4‐ethyl‐N‐(2′‐hydroxy‐5′‐nitrophenyl)benzamide were recorded and analyzed. A surface‐enhanced Raman scattering (SERS) spectrum was recorded in silver colloid. The vibrational wavenumbers and corresponding vibrational assignments were examined theoretically using the Gaussian03 set of quantum chemistry codes. The red shift of the NH stretching wavenumber in the infrared spectrum from the computational wavenumber indicates the weakening of the NH bond resulting in proton transfer to the neighboring oxygen atom. The simultaneous IR and Raman activation of the CO stretching mode gives the charge transfer interaction through a π‐conjugated path. The presence of methyl modes in the SERS spectrum indicates the nearness of the methyl group to the metal surface, which affects the orientation and metal molecule interaction. The first hyperpolarizability and predicted infrared intensities are reported. The calculated first hyperpolarizability is comparable with the reported values of similar derivatives and is an attractive subject for future studies of nonlinear optics. Optimized geometrical parameters of the title compound are in agreement with reported structures. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
FT‐IR and FT‐Raman spectra of 4‐chloro‐2‐(3‐chlorophenylcarbamoyl) phenyl acetate were studied. Vibrational wavenumbers and corresponding vibrational assignments were examined theoretically using the Gaussian03 set of quantum chemistry codes and the normal modes are assigned by potential energy distribution (PED) calculations. Simultaneous IR and Raman activation of the CO stretching mode shows the charge transfer interaction through a π‐conjugated path. Optimized geometrical parameters of the title compound are in agreement with the reported values. Analysis of the phenyl ring modes shows that C C stretching mode is equally active as strong bands in both IR and Raman, which can be interpreted as the evidence of intramolecular charge transfer via conjugated ring path and is responsible for hyperpolarizability enhancement leading to nonlinear optical activity. The red‐shift of the NH‐stretching wavenumber in the infrared spectrum from the computed wavenumber indicates the weakening of the NH bond resulting in proton transfer to the neighboring oxygen atom. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
The Fourier transform Raman (FT‐Raman) and Fourier transform infrared (FT‐IR) spectra of 2‐[acetyl(4‐bromophenyl)carbamoyl]‐4‐chlorophenyl acetate were studied. The vibrational wavenumbers were examined theoretically using the Gaussian03 set of quantum chemistry codes, and the normal modes were assigned by potential energy distribution (PED) calculations. The simultaneous Raman and infrared (IR) activations of the CO stretching mode in the carbamoyl moiety show a charge transfer interaction through a π‐conjugated path. From the optimized structure, it is clear that the hydrogen bonding decreases the double bond character of the CO bond and increases the double bond character of the C N bonds. The first hyperpolarizability and predicted IR intensities are reported. The calculated first hyperpolarizability is comparable with the reported values of similar structures, which makes this compound an attractive object for future studies of nonlinear optics. Optimized geometrical parameters of the compound are in agreement with similar reported structures. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
FT‐IR and FT‐Raman spectra of 4‐chloro‐2‐(4‐bromophenylcarbamoyl)phenyl acetate were recorded and analyzed. The vibrational wavenumbers and corresponding vibrational assignments were examined theoretically using the Gaussian03 set of quantum chemistry codes. The red shift of the NH stretching wavenumber in the infrared (IR) spectrum from the computed wavenumber indicates the weakening of the NH bond resulting in proton transfer to the neighbouring oxygen atom. The simultaneous IR and Raman activations of the CO stretching mode give the charge transfer interaction through a π‐conjugated path. Optimized geometrical parameters of the title compound are in agreement with similar reported structures. From the optimized structure, it is clear that the hydrogen bonding decreases the double bond character of CO bond and increases the double bond character of the C N bonds. The first hyperpolarizability, predicted infrared intensities and Raman activities are reported. The calculated first hyperpolarizability is comparable with the reported values of similar derivatives and is an attractive object for future studies of non‐linear optics. The assignments of the normal modes are done by potential energy distribution (PED) calculations. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
Fourier transform infrared (FT‐IR) and FT‐Raman spectra of 4‐fluoro‐N‐(2‐hydroxy‐4‐nitrophenyl)benzamide were recorded and analyzed. The vibrational wavenumbers and corresponding vibrational assignments were examined theoretically using the Gaussian03 set of quantum chemistry codes. The red‐shift of the NH‐stretching wavenumber in the infrared (IR) spectrum from the computed wavenumber indicates the weakening of the NH bond resulting in proton transfer to the neighboring oxygen atom. The simultaneous IR and Raman activation of the CO‐stretching mode gives the charge transfer interaction through a π‐conjugated path. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
Vibrational spectral analysis was carried out for 4‐methoxy‐2‐methyl benzoic acid (4M2MBA) by using Fourier transform infrared (FT‐IR) (solid, gas phase) and FT‐Raman spectroscopy in the range of 400–4000 and 10–3500 cm−1 respectively. The effects of molecular association through O H···O hydrogen bonding have been described by the single dimer structure. The theoretical computational density functional theory (DFT) and Hatree‐Fock (HF) method were performed at 6–311++G(d,p) levels to derive the equilibrium geometry, vibrational wavenumbers, infrared intensities and Raman scattering activities. The scaled theoretical wavenumbers were also shown to be in good agreement with experimental data. The first‐order hyperpolarizability (β0) of this novel molecular system and related properties (β, α0 and Δα) of 4M2MBA are calculated using the B3LYP/cc‐pvdz basis set, based on the finite‐field approach. A detailed interpretation of the infrared and Raman spectra of 4M2MBA is reported. The theoretical spectrograms for FT‐IR and FT‐Raman spectra of the title molecule were also constructed and compared with the experimental one. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
Dimethyl 1,3‐dithiole‐2‐thione‐4,5‐dicarboxylate (DDTD) was synthesized and characterized using NMR, Fourier transform (FT)‐Raman, Fourier transform‐infrared (FT‐IR) and UV spectroscopies. Resonance Raman spectra (RRs) were obtained with 341.5, 354.7 and 368.9 nm excitation wavelengths and density functional calculations were carried out to elucidate the π (S C S) →π* (S C S) electronic transitions and the RRs of DDTD in cyclohexane solution. The RRs indicate that the Franck–Condon region photo dynamics have a multidimensional character with motion predominantly along the CS stretch and the C S symmetric stretch modes in the five‐member heterocycle. A preliminary resonance Raman intensity analysis was carried out and the results for DDTD were compared with previously reported results for 1,3‐dithiole‐2‐thione (DTT). Differences and similarities of the spectra in terms of molecular symmetry and electron density are also discussed. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
The Fourier transform infrared (FT‐IR) spectrum of N‐hydroxyphthalimide has been recorded in the range of 4000–400 cm−1, and the Fourier transform Raman (FT‐Raman) spectrum of N‐hydroxyphthalimide has been recorded in the range of 4000–50 cm−1. With the hope of providing more and effective information on the fundamental vibrations, the Density Functional Theory (DFT)‐Becke3‐Lee‐Yang‐Parr (B3LYP) level with 6‐31G* basis set has been employed in quantum chemical analysis, and normal coordinate analysis has been performed on N‐hydroxyphthalimide by assuming Cs symmetry. The computational wavenumbers are in good agreement with the observed results. The theoretical spectra obtained along with intensity data agree well with the observed spectra. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
The experimental and theoretical vibrational spectra of 2‐fluorophenylboronic acid (2fpba) were studied. The Fourier transform Raman and Fourier transform infrared spectra of the 2fpba molecule were recorded in the solid phase. The structural and spectroscopic analysis of the molecule was carried out by using Hartree‐Fock and density functional harmonic calculations. For the title molecule, only one form was found to be the most stable structure, by using B3LYP level with the 6‐31++G(d,p) basis set. Selected experimental bands were assigned and characterized on the basis of the scaled theoretical wavenumbers by their total energy distribution (TED). The 1H and 13C nuclear magnetic resonance (NMR) chemical shifts of the 2fpba molecule were calculated using the Gauge‐Invariant‐ atomic orbital (GIAO) method in DMSO solution using IEF‐PCM model and compared with the experimental data. Finally, geometric parameters, vibrational wavenumbers and chemical shifts were compared with available experimental data of the molecule. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
As an important chemosensing material involving hexafluoroisopropanol (HFIP) for detecting nerve agents, para‐HFIP aniline (p‐HFIPA) has been firstly synthesized through a new reaction approach and then characterized by nuclear magnetic resonance and mass spectrometry experiments. Fourier transform infrared absorption spectroscopy (FT‐IR) and FT‐Raman spectra of p‐HFIPA have been obtained in the regions of 4000–500 and 4000–200 cm−1, respectively. Detailed identifications of its fundamental vibrational bands have been given for the first time. Moreover, p‐HFIPA has been optimized and vibrational wavenumber analysis can be subsequently performed via density functional theory (DFT) approach in order to assist these identifications in the experimental FT‐IR and FT‐Raman spectra. The present experimental FT‐IR and FT‐Raman spectra of p‐HFIPA are in good agreement with theoretical FT‐IR and FT‐Raman spectra. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
In this study, the Fourier‐transform infrared (FT‐IR) and FT‐Raman spectra of 3,5‐dichlorophenylboronicacid (3,5‐dcpba) were recorded in the solid phase. The structural and spectroscopic analysis of the 3,5‐dichlorophenylboronic was made by using density functional harmonic calculations. There are three conformers for this molecule. The computational results diagnose the most stable conformer of 3,5‐dcpba as the ct form. The geometrical parameters and energies have been obtained for all three conformers from DFT (B3LYP) with 6‐311+ + G(d,p) basis set calculations. The vibrations of stable and unstable conformers of 3,5‐dcpba are researched by using quantum chemical calculations. The complete assignments were performed on the basis of the total energy distribution (TED) of the vibrational modes calculated with the scaled quantum mechanics (SQM) method. The stability of the molecule arising from hyperconjugative interactions and charge delocalization has been analyzed using the natural bond orbital (NBO) analysis. The results show that the charge in electron density (ED) in the π* and σ* antibonding orbitals and E2 energies confirms the occurrence of ıntermolecular charge transfer (ICT) within the molecule. Finally, the calculation results were applied to simulated infrared and Raman spectra of the title compound, which show agreement with the observed spectra. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
FT‐IR and FT‐Raman spectra of methyl(2‐methyl‐4,6–dinitrophenylsulfanyl)ethanoate (MDIE) were recorded and analyzed. Surface‐enhanced Raman scattering (SERS) spectra were recorded in silver colloid and silver electrode. The vibrational wavenumbers were computed using HF/6‐31G* and B3LYP/6‐31G* basis. The data obtained from vibrational wavenumber calculations are used to assign vibrational bands obtained in infrared and Raman spectroscopies as well as in SERS of the studied molecule. The first hyperpolarizability and infrared intensities are reported. The geometrical parameters of the title compound are in agreement with the reported similar derivatives. The presence of new bands at 1045 and 948 cm−1 in the SERS spectrum in silver electrode is related to the change in orientation of the molecule with respect to the metal surface. In silver colloid SERS spectrum, the methyl group attached to the methoxy carbonyl group is close to the metal surface, whereas on silver electrode the methyl group attached to the phenyl ring is close to the metal surface. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
In this work, the experimental and theoretical vibrational spectra of N1‐methyl‐2‐chloroaniline (C7H8NCl) were studied. FT‐IR and FT‐Raman spectra of the title molecule in the liquid phase were recorded in the region 4000–400 cm?1 and 3500–50 cm?1, respectively. The structural and spectroscopic data of the molecule in the ground state were calculated by using density functional method (B3LYP) with the 6‐311++G(d,p) basis set. The vibrational frequencies were calculated and scaled values were compared with experimental FT‐IR and FT‐Raman spectra. The observed and calculated frequencies are found to be in good agreement. The complete assignments were performed on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method. 13C and 1H NMR chemical shifts results were compared with the experimental values. The optimized geometric parameters (bond lengths and bond angles) were given and are in agreement with the corresponding experimental values of aniline and p‐methyl aniline. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
Some new Hofmann‐3‐phenylpropylamine‐type clathrates with chemical formulae of M(3‐phenylpropylamine)2 Ni(CN)4. 2G (MNi or Co, G = 1,2‐dichlorobenzene or 1,3‐dichlorobenzene) have been prepared and their Fourier transform infrared(FT‐IR; 4000–400 cm−1), far‐infrared (600–100 cm−1) and FT‐Raman (4000–60 cm−1) spectra are reported. The ligand molecule, guest molecules, polymeric sheet and metal‐ligand bands of the clathrates are assigned in detail. The compounds are also characterized by thermal gravimetric analysis (TGA), differential thermal analysis (DTA), elemental analysis and magnetic susceptibility measurements. From the results, the monodentate 3‐phenylpropylamine ligand molecule bonds to the metal atom of |M‐Ni(CN)4 | polymeric layers in the trans‐gauche‐gauche (TGG) form, and 1,2‐dichlorobenzene or 1,3‐dichlorobenzene molecules are guested by this structure revealing the inclusion ability of the host complexes. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
FT‐IR and FT‐Raman spectra of benzoic acid (BA) and 3,5‐dichloro salicylic acid (SA) have been recorded in the regions of 4000–400 and 4000–50 cm−1 respectively. The spectra were interpreted with the aid of normal coordinate analysis following the full structure optimizations and force field calculations based on density functional theory (DFT) using standard B3LYP6‐31G** method and basis set combinations. The DFT force field transformed to natural internal coordinates was corrected by a well‐established set of scale factors that were found to be transferable to the title compounds. The infrared and Raman spectra were also predicted from the calculated intensities. Comparison of the simulated spectra with the experimental spectra provides important information about the ability of the computational method to describe the vibrational modes. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
The FT‐IR and FT‐Raman spectra of anilinium sulfate were recorded and analyzed. The surface‐enhanced Raman scattering (SERS) was recorded from a silver electrode. The vibrational wavenumbers of the compound have been computed using the Hartree‐Fock/6‐31G* basis and compared with the experimental values. The molecule is adsorbed on the silver surface with the benzene ring in a tilted orientation. The presence of amino and sulfate group vibrations in the SERS spectrum reveal the interaction between amino and sulfate groups with the silver surface. The direction of the charge transfer contribution to SERS has been discussed from the frontier orbital theory. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
The solid phase Fourier transform infrared (FTIR) and Fourier transform (FT) Raman spectral analysis of 7‐chloro‐3‐methyl‐2H‐1,2,4‐benzothiadiazine 1,1‐dioxide (diazoxide), an antihypertensive agent was carried out along with density functional computations. The optimized geometry, wavenumber and intensity of the vibrational bands of diazoxide were obtained by DFT‐B3LYP level of theory with complete relaxation in the potential energy surface using 6‐31G(d,p) basis set. A complete vibrational assignment aided by the theoretical harmonic frequency analysis has been proposed. The harmonic vibrational wavenumbers calculated have been compared with experimental FTIR and FT Raman spectra. The observed and the calculated wavenumbers are found to be in good agreement. The experimental spectra coincide satisfactorily with those of calculated spectra. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
The Fourier‐transform infrared spectrum of 3‐hydroxy‐2‐naphthoic acid hydrazide (3H2NAH) was recorded in the region 4000–400 cm−1. The Fourier‐transform Raman spectrum of 3H2NAH was also recorded in the region 3500–10 cm−1. Quantum chemical calculations of energies, geometrical structure and vibrational wavenumbers of 3H2NAH were carried out by density functional theory (DFT/B3LYP) method with 6‐31G(d,p) as basis set. The difference between the observed and scaled wavenumber values of most of the fundamentals is very small. The values of the electric dipole moment (µ) and the first‐order hyperpolarizability (β) of the investigated molecule were computed using ab initio quantum mechanical calculations. The UV spectrum was measured in ethanol solution. The calculation results also show that the 3H2NAH molecule might have microscopic nonlinear optical (NLO) behavior with non‐zero values. A detailed interpretation of the infrared and Raman spectra of 3H2NAH is also reported based on total energy distribution (TED). The calculated HOMO and LUMO energies shows that charge transfer occur within the molecule. The theoretical FT‐IR and FT‐Raman spectra for the title molecule have also been constructed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
The spectra of 2,5‐dihydroxybenzoic acid (DHBA) have been recorded using Fourier transform‐infrared spectroscopy (FT‐IR) and FT‐Raman measurements. The total energy calculations of DHBA were evaluated for various possible conformers. The spectra were interpreted with the help of normal coordinate analysis based on density functional theory (DFT) using standard B3LYP/6–31G* method for the most optimized geometry. The effect of intramolecular hydrogen bonding was discussed. Normal coordinate calculations were performed with the DFT force field corrected by a recommended set of scaling factors, yielding fairly good agreement between observed and calculated frequencies. On the basis of the comparison between calculated and experimental results, assignments of fundamental modes were examined. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号