首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
It is essential to passivate one‐dimensional (1D) nanostructures with insulating materials to avoid crosstalking as well as to protect them from contamination and oxidation. The structure and influence of thermal annealing on the photoluminescence properties of ZnS‐core/SiO2‐shell nanowires synthesized by the thermal evaporation of ZnS powders followed by the sputter deposition of SiO2 were investigated. Transmission electron microscopy and X‐ray diffraction analyses revealed that the cores and shells of the core‐shell nanowires were single crystal zinc blende‐type ZnO and amorphous SiO2, respectively. Photoluminescence (PL) measurement showed that the core‐shell nanowires had a green emission band centered at around 525 nm with a shoulder at around 385 nm. The PL emission of the core‐shell nanowires was enhanced in intensity by annealing in an oxidative atmosphere and further enhanced by subsequently annealing in a reducing atmosphere. Also the origin of the enhancement of the green emission by annealing is discussed based on the energy‐dispersive X‐ray spectroscopy analysis results. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
TeO2‐core/ZnO‐shell nanorods were synthesized by a two–step process comprising thermal evaporation of Te powders and atomic layer deposition of ZnO. Scanning electron microscopy images exhibit that the core‐shell nanorods are 50 ‐ 150 nm in diameter and up to a few tens of micrometers in length, respectively. Transmission electron microscopy and X‐ray diffraction analysis revealed that the cores and shells of the core‐shell nanorods were polycrystalline simple tetragonal TeO2 and amorphous ZnO with ZnO nanocrystallites locally, respectively. Photoluminescence measurement revealed that the TeO2 nanorods had a weak broad violet band at approximately 430 nm. The emission band was shifted to a yellowish green region (∼540 nm) by encapsulation of the nanorods with a ZnO thin film and the yellowish green emission from the TeO2‐core/ZnO‐shell nanorods was enhanced significantly in intensity by increasing the shell layer thickness. The highest emission was obtained for 125 ALD cycles (ZnO coating layer thickness: ∼15 nm) and its intensity was much higher than that of the emission from the uncapsulated TeO2 nanorods. The origin of the enhancement of the emission by the encapsulation is discussed in detail. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
ZnO/SrTiO3 core/shell nanorod arrays were fabricated by a facile two‐step method. ZnO nanorod arrays were first hydrothermally grown on Si substrate. Then, using liquid phase deposition method, SrTiO3 were deposited onto the ZnO nanorods to form core/shell nanorod structures. The morphologies and structures of the products were characterized by scanning electron microscopy, transmission electron microscopy, and X‐ray diffraction. The photocatalytic behavior of the nanorod arrays was also examined through the photodegradation of methylene blue solution under UV irradiation. It was found that the core/shell nanorod arrays with deposition time of 10 min showed higher photocatalytic activity than bare ZnO nanorod arrays. This enhancement was attributed to the efficient charge separation at the ZnO/SrTiO3 interface.  相似文献   

4.
We have reported the preparation of ZnO‐coated GaN nanowires and investigated changes in the structural and photoluminescence (PL) properties by the application of a thermal annealing process. For fabricating the core‐shell nanowires, Zn target was used to sputter ZnO shell onto GaN core nanowires. X‐ray diffraction (XRD) analysis indicated that the annealed core‐shell nanowires clearly exhibited the ZnO as well as GaN phase. The transmissoin electron microscopy (TEM) investigation suggested that annealing has induced the crystallization of ZnO shell layer. We have carried out Gaussian deconvolution analysis for the measured PL spectra, revealing that the core GaN nanowires exhibited broad emission which consist of red, yellow, blue, and ultraviolet peaks. ZnO‐sputtering induced new peaks in the green region. Thermal annealing reduced the relative intensity of the green emission. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
Zinc sulfide (ZnS) microspheres were synthesized by a self‐template hydrothermal route using thiourea as sulphur source. The formation of these hollow spheres was mainly attributed to the oriented aggregation of ZnS nanocystals around the gas‐liquid interface between gas (H2S, NH3, or CO2) and water followed by an Ostwald ripening process. The gas bubbles of H2S, NH3, or CO2 produced during the reaction might play a soft‐template to form ZnS hollow microspheres. The products were characterized by X‐ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), electron diffraction (ED), and photoluminescence (PL). The crystal structure of prepared ZnS microspheres is hexagonal phase polycrystalline. The average microspheres diameter is 1.5 ‐ 6 µm. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
Flower‐like self‐organized crystalline ZnO architectures were obtained through a facile and controlled hydrothermal process. As‐synthesized products were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), high‐resolution transmission electron microscopy (HRTEM), X‐ray diffraction (XRD), electron diffraction and UV‐Vis spectroscopy. XRD and electron diffraction results confirmed the obtained materials are pure wurtzite ZnO. The effects of different ratios of starting materials and solvent on the morphologies of ZnO hydrothermal products were also evaluated by SEM observations. It is suggested that the use of water, rather than ethanol as the solvent, as well as employing a precursor of Zn(Ac)2 and 2NaOH (v/v) in hydrothermal reactions are responsible for the generation of specific flower‐like self‐assembled ZnO structures. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
Well‐faceted hexagonal ZnO nanorods have been synthesized by a simple hydrothermal method at relative low temperature (90°C) without any catalysts or templates. Zinc oxide (ZnO) nanorods were grown in an aqueous solution that contained Zinc chloride (ZnCl2, Aldrich, purity 98%) and ammonia (25%). Most of the ZnO nanorods show the perfect hexagonal cross section and well‐faceted top and side surfaces. The diameter of ZnO nanorods decreased with the reaction time prolonging. The samples have been characterized by X‐ray powder diffraction (XRD) and scanning electron microscopy (SEM) measurement. XRD pattern confirmed that the as‐prepared ZnO was the single‐phase wurtzite structure formation. SEM results showed that the samples were rod textures. The surface‐related optical properties have been investigated by photoluminescence (PL) spectrum and Raman spectrum. Photoluminescence measurements showed each spectrum consists of a weak band ultraviolet (UV) band and a relatively broad visible light emission peak for the samples grown at different time. It has been found that the green emission in Raman measurement may be related to surface states. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
We synthesized In2O3/ZnO/Al‐doped ZnO (AZO) core‐double shell nanowires, in which the inner shell (ZnO) and the outer shell (AZO) have been subsequently deposited on the core In2O3 nanowires. With their one‐dimensional morphology being preserved, the X‐ray diffraction (XRD), lattice‐resolved transmission electron microscopy (TEM) image, selected area electron diffraction, and Raman spectrum coincidentally revealed that the shell was comprised of hexagonal ZnO phase. In addition, TEM‐EDX investigation revealed the presence of Al elements in the shell region. The thermal annealing at 700 °C did not significantly change the nanowire morphology, however, the XRD spectrum indicated that the ZnO phase was crystallized by the annealing. PL spectrum of the 700 °C‐annealed In2O3/ZnO/AZO core‐double shell nanowires was comprised of three Gaussian bands at approximately 2.1 eV, 2.4 eV, and 3.0 eV, respectively. The integrated intensities of 2.1 eV‐, 2.4 eV‐, and 3.0 eV‐bands were decreased by the thermal annealing. This study will pave the road to the preparation and applicaition of double‐shelled nanowires. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
Self‐assembled In (Indium)‐doped ZnS nanowire bundles were synthesized via a thermal evaporation method without using any template. Vapor ‐ solid homoepitaxial growth was found to be the key reason for the formation of close‐packed nanowire bundles grown on the surface of microscale sphere‐shaped ZnS crystal. X‐ray diffraction (XRD), selected area electron diffraction (SAED), and transmission electron microscopy (TEM) analysis demonstrate that the In‐doped ZnS nanowires have the cubic structure, and there are numerous stacking faults along the <111> direction. Photoluminescence (PL) spectrum shows that the spectrum mainly includes two parts: a weak violet emission band centering at about 380 nm and a strong green emission band centering at about 510 nm. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
A simple and general microwave route is developed to synthesize nanostructured ZnO using Zn(acac)2·H2O (acac = acetylacetonate) as a single source precursor. The reaction time has a great influence on the morphology of the ZnO nanostructures and an interesting spindle‐like nanostructure is obtained. The microstructure and morphology of the synthesized materials are investigated by X‐ray diffraction (XRD), scanning electron microscopy (SEM), field‐emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), high‐resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED). It is found that all of them with hexagonal wurtzite phase are of single crystalline structure in nature. Ultraviolet–visible (UV‐vis) absorption spectra of these ZnO nanostructures are investigated and a possible formation mechanism for the spindle‐like ZnO nanostructures is also proposed.  相似文献   

11.
采用水热法在HTlc-ZnAlCO3纳米片上对称生长出平行排列的梳子状ZnO纳米棒.利用X射线衍射(XRD)、场发射扫描电子显微镜(FESEM)对得到的样品进行表征.揭示ZnO纳米棒的可控生长规律,在此基础上对其生长机理进行初步探讨.  相似文献   

12.
反相微乳液法制备CdS/ZnS纳米晶及其表征   总被引:2,自引:0,他引:2  
用反相微乳液法制备了CdS纳米粒子,以ZnS对其表面进行包裹,得到了核壳结构的CdS/ZnS纳米晶.采用X射线衍射(XRD)、透射电镜(TEM)表征其结构、粒度和形貌,紫外-可见吸收光谱(UV-VIS)、光致发光光谱(PL)表征其光学特性.制得的CdS纳米微粒近似呈球形,直径约3.6nm;包裹以后颗粒仍为球形,粒径约10nm,以XRD、UV-VIS和PL证实了CdS/ZnS核壳结构的实现.文章还研究了不同Zn/Cd的摩尔比对CdS/ZnS纳米微粒光学性能的影响,UV-VIS谱表明随着壳层厚度的增加CdS/ZnS纳米晶的吸收带边有轻微的红移;PL谱表明壳层ZnS的包覆可减少CdS纳米微粒的表面缺陷,带边直接复合发光几率增大,且具有合适的壳层厚度时,CdS核层的发光效率有较大提高.  相似文献   

13.
Nanoplates, flower‐like nanostructure of ZnO were successfully synthesized by employing ZnSO4·7H2O, NaOH as the starting materials at 120°C under hydrothermal condition. Keeping the same parameters, ZnO urchin shape was obtained by addition of vitamin C at 190°C. Characterizations were carried out by X‐ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) at room temperature. Selected area electron diffraction (SAED) pattern confirms that the product is single crystalline nature. The possible formation mechanisms for synthesized ZnO nanosturcture with various morphologies have also been proposed. PL spectrum from the ZnO flower‐like structures reveals weak UV emission and strong green emission. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
In this paper we report a chemical method named coordination reaction method to synthesize ZnO nanowire arreys. ZnO nanowires with the diameter about 80nm were successfully fabricated in the channels of the porous anodic alumina (PAA) template by the above coordination reaction method. The microstructures of ZnO/PAA assembly were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X‐ray diffraction (XRD). The results showed that the ZnO nanowires can be uniformly assembled into the nanochannels of PAA template. The growth mechanism of ZnO nanowires and the conditions of the coordination reaction are discussed. Photoluminescence (PL) measurement shows that the ZnO/PAA assembly system has a blue emission band caused by the various defects of ZnO. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
李芹  张海明  李菁  杨岩  缪玲玲 《人工晶体学报》2012,41(1):136-140,145
本文利用二次阳极氧化法在p型低阻〈100〉晶向的硅衬底上制备了AAO/Si,以硅基AAO为辅助模板,采用电化学沉积的方法以Zn(NO3).6H2O和HMT(C6H12N4)为原料,在80℃的水浴槽中制备了ZnO纳米线结构。采用SEM,XRD和拉曼光谱等手段对ZnO/AAO/Si复合结构进行表征。SEM图表明ZnO纳米线已成功组装到AAO/Si模板里,直径约45 nm,长度约为600 nm。XRD和拉曼光谱表明ZnO具有六角纤锌矿多晶结构。光致发光(PL)谱图表明ZnO/AAO/Si复合结构在565 nm附近有较宽黄绿发射峰,在395 nm附近有微弱的紫外发射峰。场发射测试结果表明,ZnO纳米线的场增强因子的β值为2490,场增强因子很高,具有广泛的应用前景。  相似文献   

16.
Two kinds of hollow twinning ZnO microstructures were synthesized through a simple hydrothermal method without additional templates or any surfactants. Dumbbell‐like and shuttle‐like ZnO microstructures with hollows were obtained by changing the materials source. The products were characterized by X‐ray power diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and high‐resolution transmission electron microscopy (HRTEM). It was found that different precursors may be responsible for the formation of two different morphologies. Based on the time‐dependent experiments, we investigated the growth process of these hollow twinning structures and found the “Ostwald‐ripening process” played an important role. The interesting point of this growth process was that the interface of the two twinning structure performed as the activate center where the Ostwald‐ripening process carried out. We also investigated the luminescent properties of the as‐obtained products by photoluminescence (PL) spectroscopy. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
微乳液法制备二氧化硅包覆ZnS:Mn/CdS纳米晶   总被引:1,自引:0,他引:1  
采用微乳液法制备核壳结构ZnS:Mn/CdS(~4.5nm)纳米晶,为获得水溶性纳米晶,继续向此微乳液添加硅酸乙酯(TEOS),并使用氨水作为催化剂,通过TEOS水解缩聚反应,在ZnS:Mn/CdS粒子表面生长连续的二氧化硅壳层.采用透射电子显微镜(TEM)、X射线衍射(XRD)、红外光谱(IR)、光致发光谱(PL)对其表面形貌、结构和光学特性进行表征.ZnS:Mn /CdS纳米粒子表面被二氧化硅壳层完全包覆,粒径大小约为10nm左右,粒子均匀性好.由于二氧化硅相无定形且透光性良好,二氧化硅包覆ZnS:Mn/CdS纳米晶的光学特性与未包覆的ZnS:Mn/CdS极其相似.  相似文献   

18.
BiOCl/ZnO异质结型复合光催化剂的水热合成及其光催化性能   总被引:1,自引:0,他引:1  
以醋酸锌、氯化钠、硝酸铋和氧氧化钠为原料,利用水热法合成了含BiOCl为1wt;、2wt;、4wt;、8wt;和16wt;的异质结型BiOCl/ZnO复合光催化剂.采用X射线粉末衍射(XRD)、扫描电镜(SEM)、傅里叶变换红外光谱(FT-IR)、紫外可见漫反射光谱(UV-Vis DRS)和光致发光(PL)谱等系列手段对所制备的光催化剂进行了表征.以紫外光(254 nm)为光源,酸性橙Ⅱ为光催化反应降解模型,进行光催化活性测试,考察了复合BiOCl对ZnO光催化剂反应活性和稳定性的影响.研究表明,异质结型BiOCl/ZnO复合光催化剂的光催化性能明显优于纯ZnO.当复合BiOCl的含量为4wt;时,光催化活性最佳,为纯ZnO的3.4倍,同时该催化剂在循环使用中具有更好的稳定性.  相似文献   

19.
ZnO/α‐Fe2O3 nanocomposites were fabricated through a two‐step hydrothermal method. The morphology and composition of the as‐synthesized products were characterized by X‐ray powder diffraction (XRD), field emission scanning electron microscopy (FESEM), energy‐dispersive X‐ray spectroscopy (EDS), transmission electron microscopy (TEM) and high resolution transmission electron microscopy (HRTEM). The gas sensing properties of the fabricated products were investigated towards ethanol, acetone, propanol, isopropanol, formaldehyde, chloroform and so on. The results demonstrated that the ZnO/α‐Fe2O3 nanocomposites exhibited excellent sensing properties and showed remarkably higher sensing responses and much lower optimum operating temperature compared to individual ZnO and α‐Fe2O3. In addition, the ZnO/α‐Fe2O3 nanocomposites have some selectivity for ethanol, propanol and isopropanol. The possible gas sensing mechanism was also proposed. Our studies demonstrate that our fabricated materials could be widely used in the future.  相似文献   

20.
采用X射线衍射、扫描电子显微镜和光致发光等技术研究了空气退火对ZnS薄膜的结构和光学特性的影响.薄膜在500℃以下退火后结晶质量得到改善,仍呈ZnS立方相结构.退火温度达到550℃时,薄膜中出现ZnO六方相结构.薄膜退火后,大气中的氧掺入薄膜中,出现ZnS-ZnO复合层.随退火温度升高,薄膜晶粒尺寸增大,透过率增加,带隙逐渐接近ZnO带隙.薄膜光致发光结果表明,复合层内ZnS和ZnO绿色发光的叠加替代了来自ZnS缺陷能级间的绿色发光.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号