首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The theory and applications of Raman optical activity (ROA), which measures vibrational optical activity by means of a small difference in the intensity of Raman scattering from chiral molecules in right- and left-circularly polarized incident light or, equivalently, a small circularly polarized component in the scattered light, are briefly reviewed. Thanks to new developments in instrumentation, ROA may be applied to a wide range of chiral molecular species. As well as providing the absolute configuration of small chiral molecules, the application of ab initio methods to the analysis of experimental ROA spectra holds great promise for the determination of the three-dimensional structure and conformational distribution in unprecedented detail. The many structure-sensitive bands in the ROA spectra of aqueous solutions of biomolecules provide detailed structural information including, in the case of proteins, the tertiary fold in addition to secondary structure elements such as helix and sheet. ROA studies of unfolded and partially folded proteins are providing new insight into the residual structure in denatured proteins and the aberrant behaviour of proteins responsible for misfolding diseases. It is even possible to measure the ROA spectra of most intact viruses, from which information about the folds of the major coat proteins and the structure of the nucleic acid core may be obtained. Hopefully this review will stimulate interest in the molecular physics aspects of the subject, and will encourage further theoretical work aimed at extracting maximum information from the plethora of structure-sensitive bands in typical ROA spectra.  相似文献   

2.
Surface‐enhanced Raman scattering (SERS) spectroscopy was applied to observe reduced L ‐glutathione [L‐Glut(R)] molecules self‐assembled on a silver surface and the effect of Pb2+ on them. The adsorption structure suggests that the mercapto group of the L‐Glut(R) molecule is covalently bonded to the silver surface along with the imine group, amino group and entire carboxyl group in a perpendicular orientation after self‐reorganization. Results of SERS experiment show that Pb2+ influences the structure of L‐glutathione monolayers as a result of the binding reaction possibly occurring between Pb2+ and the carboxyl and the amino groups. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
A novel self‐assembled organic–inorganic hybrid structure consisting of zinc oxide and two oppositely charged porphyrins, showing significantly enhanced photocatalytic activity, is presented. Electrostatic self‐assembly of the cationic tetra‐(N‐methyl‐4‐pyridyl)porphyrin (TMPyP) with preformed assemblies of ZnO nanorods and the anionic tetra‐(4‐sulfonatophenyl)porphyrin (TPPS) in ethanol results in porphyrin microrhombuses decorated with ZnO nanorods. The structure formation is followed spectroscopically. The shape of the microrhombuses and the number of attached ZnO nanoparticles can be tuned through the porphyrin ratio TMPyP/TPPS. An enhanced and selective catalytic activity is found, giving insight into the degradation mechanism. Due to the tool‐box principle and its versatility, the concept may have great impact in fields such as solar‐energy conversion and optoelectronics.  相似文献   

4.
We have first time demonstrated the construction of a plasmonic gold dimer model for bioassays based on immune recognition with surface‐enhanced Raman scattering (SERS). To induce a strong plasmonic coupling effect, a dimer of gold nanoparticles (NPs) with a Raman label located between adjacent NPs is assembled through specific recognition in biological systems. One promising application for this model is the provision of a new type of in situ self‐calibrated and reliable SERS platform where biotinylated molecules can selectively be trapped by streptavidin and placed in the gap enhanced plasmonic field, which may enable the development of powerful, biospecific recognition‐based SERS assays. The capabilities of the dimeric constructions for analytical applications were demonstrated through the use of the SERS technique to detect biotin at very low concentrations. Additionally, the spatial SERS radiation for the gold dimer assembled on the silicon slide was simulated using the finite‐difference time‐domain method; this simulation demonstrated the distribution of the electric field as well as the utility of the proposed system, thereby introducing potential uses of bio‐specific recognition as well as opportunities for the construction of plasmonically coupled nanostructures and bioassay applications. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
A simple incident circular polarization Raman optical activity (ICP ROA) spectrometer was constructed by applying the method of circularity conversion. The circular polarization of the incident laser light was modulated between right and left by the insertion of a half‐wave plate and not by using a Pockels cell which is usually used in ICP ROA instruments. On the basis of the concept of the virtual enantiomer (Hug, W. Applied Spectroscopy, 2003, 57, 1), circularity converters were inserted in the optical train, which could effectively compensate the systematic offset. The new instrument successfully attained photon shot‐noise‐limited conditions for all bands except for the very strongly polarized Raman band. The ROA spectra of some standard chiral samples were measured to demonstrate the performance of the spectrometer. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
In this paper, a novel approach to analyze in situ (−)‐bornyl acetate (BA) in pichtae essential oil (Siberian fir needle oil, Abies sibirica oil) by means of Raman optical activity (ROA) is reported. As part of this approach, a conformational study in the gas phase of (+)‐ and (−)‐BA has been carried out, predicting the presence of three conformers for each enantiomer at 298.15 K. The structures of these conformers were optimized with density functional theory with the Becke 3LYP functional and 6–311 + + g** basis set. Subsequently, the Raman and ROA spectra were simulated in order to compare them with the experimentally measured spectra of the neat enantiomers of BA. Finally, the combination of Raman and ROA spectroscopy as well as DFT calculations was successfully applied not only for the detection of BA but also for the determination of the specific enantiomer of BA present in the investigated pichtae essential oil samples. Thus, the ROA technique described here has the potential to be used as a fast and easy commercial method to control the quality of essential oils. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
In this paper, the fabrication of an active surface‐enhanced Raman scattering (SERS) substrate by self‐assembled silver nanoparticles on a monolayer of 4‐aminophenyl‐group‐modified glassy carbon (GC) is reported. Silver nanoparticles are attached to the substrate through the electrostatic force between the negatively charged silver nanoparticles and the positively charged 4‐aminophenyl groups on GC. The active SERS substrate has been characterized by means of tapping‐mode atomic force microscopy (AFM), indicating that large quantities of silver nanoparticles are uniformly coated on the substrate. Rhodamine 6G (R6G) and p‐aminothiophenol (p‐ATP) are used as the probe molecules for SERS, resulting in high sensitivity to the SERS response, with the detection limit reaching as low as 10−9 M . This approach is easily controlled and reproducible, and more importantly, can extend the range of usable substrates to carbon‐based materials for SERS with high sensitivity. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

8.
A new method is reported for detecting heavy metal ions by using the self assembled monolayer (SAM) technique and surface enhanced Raman spectroscopy (SERS). The p‐mercaptobenzoic acid (MBA) served as the SERS readout molecule and the modified tag to attach on the smooth gold substrate as well as the tag of nanoparticles by the SAM method. Two carboxyl groups from MBA molecules which were attached respectively to gold substrate and gold nanoparticles were linked through the heavy metal ions (Cu2+, Pb2+ and Zn2+) as bridge, and thus sandwich structure of ‘MBA modified gold substrate/heavy metal ions/MBA modified gold nanoparticles’ was built for detection. The observation of the oxidation peak of metal nanoparticles from cyclic voltammetry (CV) curve, gold nanoparticles from scanning electron microscopy (SEM) images and SERS signal of MBA from the sandwich structure indicated the existence of heavy metal ions. The difference in the wavenumbers of vibrational modes from MBA in the sandwich structure constructed by different could be used to identify different heavy metal ions. The assembled structure was rinsed by strong chelator of EDTA solution to remove the heavy metal ions from the sandwich structure and thus to obtain a fresh gold substrate modified with MBA for the cyclic detection. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

9.
GHK‐Cu is demonstrated with the abilities to improve wound healing, accelerate anti‐inflammatory activity, and repair DNA damage. However, the instability of the GHK‐Cu in biological fluids is always a big challenge for its long‐term and efficient function at the target site. Therefore, the self‐assembled GHK‐Cu nanoparticles (GHK‐Cu NPs) are investigated in this work to solve the instability issue. The crystalline nanostructure within the GHK‐Cu nanoparticles offers them visible and near‐infrared fluorescent properties. With the excellent self‐assembly performance, the antibacterial properties of GHK‐Cu NPs are demonstrated using E. coli and S. aureus. The L929 dermal fibroblast cells are utilized to prove the good biocompatibility and enhanced wound healing applications of GHK‐Cu NPs. This study could pave the way for the design and elaboration of a new class of fluorescent peptides with various biological functions in biomedical applications.  相似文献   

10.
To probe the intrinsic stress distribution in terms of spatial Raman shift (ω) and change in the phonon linewidth (Γ), here we analyze self‐assembled graphene oxide fibers (GOF) ‘Latin letters’ by confocal Raman spectroscopy. The self‐assembly of GOF ‘Latin letters’ has been explained through surface tension, π–π stacking, van der Waals interaction at the air–water interface and by systematic time‐dependent investigation using field emission scanning electron microscopy analysis. Intrinsic residual stress due to structural joints and bending is playing a distinct role affecting the E2g mode (G band) at and away from the physical interface of GOF segments with broadening of phonon linewidth, indicating prominent phonon softening. Linescan across an interface of the GOF ‘letters’ reveals Raman shift to lower wavenumber in all cases but more so in ‘Z’ fiber exhibiting a broader region. Furthermore, intrinsic stress homogeneity is observed for ‘G’ fiber distributed throughout its curvature with negligible shift corresponding to E2g mode vibration. This article demonstrates the significance of morphology in stress distribution across the self‐assembled and ‘smart‐integrable’ GOF ‘Latin letters’. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
Single‐component self‐assembled monolayers (SAMs) of mercaptoethanesulfonate (MES) on Ag surfaces were studied with surface‐enhanced resonance Raman scattering (SERRS) spectroscopy with a view to their application to immobilize (ferro)cytochrome c (cyt c). SERS studies revealed that MES molecules adopt primarily trans (T) conformation even at early stages of the SAM growth and over wide range of pH values. High accessibility of the negatively charged groups for (bio)molecules in solution makes single‐component MES SAMs suitable linkage monolayers for electrostatic attachment of cyt c, which was verified with SERRS. Cyt c was successfully anchored to MES‐coated Ag at natural (∼5), neutral, and isoelectric point (10.6) pH. At pH = 7.0 and 10.6, SERRS bands characteristic of native six‐coordinated low‐spin (6cLS) heme iron configuration were detected. Lack of buffering resulted in additional appearance of five‐coordinated high‐spin (5cHS) SERRS markers and the presence of bands indicating ferric ion. An electrostatic attraction between protein and SAM was confirmed to exclude the hydrophobic interactions involved in cyt c binding. Cyt c attached to MES SAM on Ag was found to be electroactive at neutral pH, and protein oxidation was assisted with reversible conversion of 6cLS to the non‐native 5cHS state. Alteration of heme orientation deduced from SERRS spectra upon change of redox state allowed us to propose the protein dynamics as the electron transfer rate‐limiting step. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
A new scattering technique in grazing‐incidence X‐ray diffraction geometry is described which enables three‐dimensional mapping of reciprocal space by a single rocking scan of the sample. This is achieved by using a two‐dimensional detector. The new set‐up is discussed in terms of angular resolution and dynamic range of scattered intensity. As an example the diffuse scattering from a strained multilayer of self‐assembled (In,Ga)As quantum dots grown on GaAs substrate is presented.  相似文献   

13.
A facile method was developed to fabricate a high sensitive, reproducible and recyclable surface enhanced Raman spectroscopy (SERS) active glass capillary. The Au nanoparticles were synthesized through a seed‐mediated growth approach and then self‐assembled onto the inner wall of glass capillaries. The attached Au nanoparticles were homogeneously coated with thin silica shell by using the silane coupling agent to functionalize the Au surface. By using thiophenol (TP) as SERS probe molecules, the substrate exhibited robust SERS effects. The adsorbed SERS probe molecules could be rapidly and completely removed away by flowing sodium borohydride solution and thus to obtain a refresh Au@SiO2 film‐coated substrate for the cyclic detection on different species. The on‐line detection of TP and malachite green (MG) with different concentrations was performed in the flowing system. The intensities of SERS signals were dependent on concentrations of the detected molecules. The results indicated that the SERS‐active substrate has potential applications on the on‐line qualitative and quasi‐quantitative analysis. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
We deposited epitaxial BiFeO3–CoFe2O4 (BFO–CFO) self‐assembled thin films on (001) SrTiO3 (STO) substrates. We find that a combined annealing and etching process could remove the BFO matrix, thereby resulting in free‐standing CFO nanopillar arrays. Scanning electron and atomic force microscopies showed well separated CFO nanopillars, which were very similar to the original CFO ones in the self‐assembled structure. Finally, comparison of the magnetic hysteresis loops before and after removal of the BFO matrix showed a significant decrease of the coercive field and a dramatic decrease in the strain dominated magnetic anisotropy. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
Cinchona alkaloids are well‐known antimalarial compounds also used in asymmetric synthesis in organic chemistry. In this work, vibrational spectra of quinine, quinidine, cinchonine, and cinchonidine were acquired and interpreted on the basis of theoretical calculations. Normal Raman spectra of the alkaloids in solution exhibit similar patterns and cannot be used for differentiation between the derivatives (e.g. quinine and cinchonidine) and corresponding pseudoenantiomers (e.g. quinine and quinidine). Thus, Raman Optical Activity (ROA) method was applied to show distinct differences related to the configuration of chiral atoms. ROA allowed unequivocal identification of the pseudoenantiomers based on the sign of the characteristic bands from a single measurement. The experiments were supported by the theoretical approach including conformational study followed by wavenumber calculations and Potential Energy Distribution (PED) analysis. For quinine, vibrational spectroscopy was additionally used to show its structural changes in aqueous solutions at various pH and its distribution in a pharmaceutical product. Spatial distribution of quinine in a drug was observed by the FT‐Raman mapping technique. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
In order to assess the usability of X‐ray absorption near‐edge structure (XANES) for studying the structure of BOn‐containing materials, the dependence of theoretical XANES at the B K‐edge on the way the scattering potential is constructed is investigated. Real‐space multiple‐scattering calculations are performed for self‐consistent and non‐self‐consistent potentials and for different ways of dealing with the core hole. It is found that in order to reproduce the principal XANES features it is sufficient to use a non‐self‐consistent potential with a relaxed and screened core hole. Employing theoretical modelling of XANES for studying the structure of boron‐containing glasses is thus possible. The core hole affects the spectrum significantly, especially in the pre‐edge region. In contrast to minerals, B K‐edge XANES of BPO4 can be reproduced only if a self‐consistent potential is employed.  相似文献   

17.
Spectroscopic analysis of homochiral dimerization is important for the understanding of the homochirality of life and enantioselective catalysis. In this paper, (S)‐methyl lactate and related molecules were studied to provide detailed structural information on hydrogen bonding in homochiral dimers of chiral α‐hydroxyesters through the experimental and theoretical study of Raman optical activity. Different homochiral dimers can be distinguished by comparing their simulated Raman optical activity spectra with the experimental results. Hydrogen bonding motions are decoded with the aid of vibrational motion analysis, which are apparently involved in vibrational motions below 800 cm–1. A common feature related to the chain‐bending mode also indicates the absolute configuration of methyl lactate and related molecules. The differing behavior of electric dipole–electric quadrupole invariants (β(A)2) compared with the electric dipole–magnetic dipole invariant (β(G′)2), suggests that the intermolecular hydrogen bonding motion behaves differently from the intramolecular one in the asymmetric molecular electric and magnetic fields. These results may help understand hydrogen‐bonded self‐recognition and other dynamical features in chiral recognition. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
19.
具有共轭结构的非手性分子在界面通过自组装能够形成手性超分子,这种自发对称性破缺的过程为解释生命起源提供了线索,相关研究具有重要的科学意义。目前,尽管文献中对于界面手性自组装的机理有了详细的探讨,但对于手性结构的动力学过程缺乏深入的研究。为了阐明界面自组装手性是否会随时间变化,利用二次谐波-线二色谱方法(SHG-LD)研究了偶氮苯衍生物PARC18在气/液界面的超分子自组装手性。结果表明,PARC18在纯水表面形成了手性状态稳定的宏观结构,而在亚相为NaOH溶液时,界面形成的手性结构状态随时间变化。此外,在纯水表面,谐波信号主要源于电偶极矩的贡献,而在NaOH溶液表面,磁偶极距对谐波信号,尤其是手性信号的贡献占主导。推测这是由于在碱性条件下,界面的PARC18分子发生构型异构化,分子中的两个发色团相互耦合,导致手性结构发生变化,同时增强了磁偶极的贡献。  相似文献   

20.
Monolayers of N‐acetylalanine on a metallic surface can serve as a biocompatible functional interface to construct biosensors. In the present paper, the surface‐enhanced Raman scattering (SERS) spectra of N‐acetylalanine monolayers self‐assembled on a silver surface under different pH were recorded. Assignments of the obtained spectra were carried out by density functional theory (DFT) calculations (BLYP/6‐311G). On the basis of the SERS effect, the nature of adsorption of N‐acetylalanine on a silver surface was deduced. It can be concluded that the fully protonated N‐acetylalanine is adsorbed on the silver surface via the imine group together with the carboxylate group, while it anchored onto the surface not only through both the imine and the carboxylate groups but also through the amide group after being completely deprotonated in the basic solution. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号