首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The condition of continuity in the large and in the small and Masing effect as the mechanical requirements for cyclic plasticity are first formulated. The basic characteristics of several well-known and frequently used cyclic plasticity models are examined with respect to fulfillment of these requirements, and their inevitable defects are indicated. It is concluded that among these models only the extended subloading surface model fulfills these requirements and is applicable to the prediction of elastoplastic deformation for cyclic loading, although unfortunately the other models, especially the multi, the two, and the initial subloading surface models, have been frequently adopted for metals, geomaterials, concretes, and so forth.  相似文献   

2.
3.
The generalized elastoplastic constitutive equation for soils is proposed based on the subloading surface model extended so as to describe the dependence of both the magnitude and the direction of inelastic stretching on the stress rate tangential to the subloading surface [Int J Plasticity 17 (2001) 117]. It would be applicable to the analysis of deformation of soils in both normal-yield and subyield states for not only lower but also higher stress ratio than that in the critical state. Then, the shear band formation in the rectangular specimen subjected to the biaxial compression under the undrained plane strain condition is analyzed by the generalized equation, and thus the condition for shear band formation and the shear band inclination are discussed in relation to material properties and the state of stress, i.e. the stress-ratio and the normal-yield ratio. These results reveal that the tangential stretching term makes easy to fulfill the necessary condition of shear band formation for not only normal-yield but also subyield states, and further the formation is affected by the material parameter prescribing the approaching degree of the stress to the normal-yield state.  相似文献   

4.
An elastoplastic constitutive equation capable of describing the tangential-plastic strain rate induced by the component of stress rate tangential to the subloading surface, called the tangential-plastic stress rate, is proposed based on the subloading surface model [J. Appl. Mech. (ASME) 47 (1980) 266]. Here, the novel tangential-yield surface and the novel tangential-loading criterion are incorporated for the tangential-plastic strain rate. The equation is capable of describing the deformation behavior with the smooth elastic–plastic transition. Based on the equation, a constitutive equation for metals is formulated, its mechanical features are examined and some basic responses are compared with test data.  相似文献   

5.
An extended gradient elastoplastic constitutive equation is formulated, which is capable of describing the plastic strain rate due to the rate of stress inside the yield surface and the inelastic strain rate due to the stress rate component tangential to the subloading surface by incorporating the tangential-subloading surface model. Based on the extended constitutive equation, the post-localization analysis of granular materials is performed to predict the shear-band thickness. It is revealed that the shear-band thickness is almost determined by the gradient coefficient characterizing the inhomogeneity of deformation, although the stress–strain curve is strongly dependent on material properties.  相似文献   

6.
7.
岩土中的剪切带局部化问题研究:回顾与展望   总被引:3,自引:0,他引:3  
回顾了圆弧滑动面理论的产生及其在土坡抗滑动稳定分析和极限承载力计算中的应用,并指出了圆弧滑动面理论和刚塑性理论及极限平衡条件的关系及其局限性。介绍了剪切带局部化问题的研究现状,包括一些热点研究领域和最新研究成果。着重介绍了用子负荷面模型模拟超固结黏性土剪切带局部化和用动态剪切带单元模拟摩尔一库仑材料剪切带局部化的最新研究成果。对剪切带局部化问题研究提出了几个主要发展方向。  相似文献   

8.
9.
A high friction coefficient is first observed as a sliding between bodies commences, which is called the static friction. Then, the friction coefficient decreases approaching the lowest stationary value, which is called the kinetic friction. Thereafter, if the sliding stops for a while and then it starts again, the friction coefficient recovers and a similar behavior as that in the first sliding is reproduced. In this article the subloading-friction model with a smooth elastic–plastic sliding transition [Hashiguchi, K., Ozaki, S., Okayasu, T., 2005. Unconventional friction theory based on the subloading surface concept. Int. J. Solids Struct. 42, 1705–1727] is extended so as to describe the reduction from the static to kinetic friction and the recovery of the static friction. The reduction is formulated as the plastic softening due to the separations of the adhesions of surface asperities induced by the sliding and the recovery is formulated as the viscoplastic (creep) hardening due to the reconstructions of the adhesions of surface asperities during the elapse of time under a quite high actual contact pressure between edges of asperities.  相似文献   

10.
A new algorithm for the surface tension model was developed for moving particle methods. The algorithm is based on the link‐list search algorithm and the continuum surface tension (CST) model. The developed algorithm with the CST model was implemented to a kind of moving particle approach, the finite volume particle (FVP) method. The FVP method with the new algorithm was tested by oscillatory behaviour of a two‐dimensional droplet. The oscillatory period agrees well with analytical one, and the transient shape of the droplet is also in good agreement with that obtained by other numerical methods. The droplet impact on a liquid surface was also studied using the new algorithm. The deposition and splashing phenomena were clearly reproduced. Simulated spread radius of the splashing phenomena was consistent with a power law. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

11.
A new numerical algorithm for attached cavitation flows is developed. A cavitation model is implemented in a viscous Navier–Stokes solver. The liquid–vapour interface is assumed as a free surface boundary of the computation domain. Its shape is determined with an iterative procedure to match the cavity surface to a constant pressure boundary. The pressure distribution, as well as its gradient along the wall, is taken into account in updating the cavity shape iteratively. A series of computations are performed for the cavitating flows across three kinds of headform/cylinder bodies: conic, ogival and hemispheric heads. A range of cavitation numbers is investigated for each headform/cylinder body. The obtained results are reasonable and the iterative procedure of cavity shape updating is quite stable. The superiority of the developed cavitation model and algorithm is demonstrated. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

12.
树木在风中摇曳是一个流固耦合问题,但树的结构复杂,无法直接用已有的流固耦合数值方法来模拟.本文提出一种基于虚拟耦合面的流固耦合方法,该方法用一个虚拟的连续曲面把树冠包裹起来,在这个曲面上建立流固耦合关系,并将虚拟曲面上计算得到的风荷载作为树木结构的外力进行加载.虚拟耦合面本身不妨碍树木枝条的运动,且能避免在每个枝条、树...  相似文献   

13.
A rate-dependent, continuum damage model is developed for brittle materials under dynamic loading. This model improves on the approach (ISOSCM) of [Addessio, F.L., Johnson, J.N., 1990. A constitutive model for the dynamic response of brittle materials. Journal of Applied Physics 67, 3275–3286] in several respects. (1) A new damage surface is found by applying the generalized Griffith instability criterion to the dominant crack (having the most unstable orientation), rather than by averaging the instability condition over all crack orientations as done previously. The new surface removes a discontinuity in the damage surface in ISOSCM when the pressure changes sign. (2) The strain due to crack opening is more consistent with crack mechanics, with only the tensile principal stresses contributing to the crack opening strain. This is achieved by incorporating a projection operator in the equation for the crack opening strain. One consequence of incorporating the projection operator is a prediction of shear dilatancy, which is not accounted for in ISOSCM. (3) The evolution of damage, which is based on the energy-release rate for the dominant crack, has a physical basis, whereas in the previous approach the damage growth rate was assumed to be an exponential function of the distance from the stress state to the damage surface without specific physical justification.An implicit algorithm has been developed so that a larger time step can be used than with the explicit algorithm used in ISOSCM. The numerical results of a silicon carbide (SiC) ceramic under several loading paths (hydrostatic tension/compression, uniaxial strain, uniaxial stress, and shear) and strain rates are presented to illustrate the main features of the model.  相似文献   

14.
In this paper, an integrated smoothed particle hydrodynamics (SPH) model for complex interfacial flows with large density ratios is developed. The discrete continuity equation and acceleration equation are obtained by considering the time derivative of the volume of particle and Eckart's continuum Lagrangian equation. A continuum surface force model is used to meet the fact that surface force may not be distributed uniformly on each side of the interface. An improved boundary condition is imposed to model wall free-slip and no-slip condition for interfacial flows with large density ratios. Particle shifting algorithm (PSA) is added for interfacial flows by imposing the normal correction near the interface, called as Interface-PSA. Then four representative numerical examples, including droplet deformation, Rayleigh-Taylor instability, dam breaking, and bubble rising, are presented and compared well with reference data. It is demonstrated that inherent interfacial flow physics can be well captured, including surface tension and the dynamic evolution of the complex interfaces.  相似文献   

15.
提出了湍流边界层的一种简单、快速计算方法, 用以求解强吸气作用下旋转圆筒表面边界层流动. 首先, 理论分析了同心圆筒间的旋转流体运动, 外筒静止、内筒旋转且为多孔吸气条件. 强吸气情况下旋转流动主要表现为内筒壁面附近的边界层流动, 基于这一事实得到了周向速度分布的解析表达式. 其次, 通过引入新参数扩展Cebeci-Smith代数湍流模型, 使其能考虑流线曲率、壁面吸气、低Reynolds数效应等因素. 针对这些因素的综合影响, 采用解析修正和经验参数对模型进行调整. 同时, 基于Reynolds应力湍流模型的仿真结果, 校准代数湍流模型中的经验参数. 最后, 给出基于广义Cebeci-Smith湍流模型的旋转壁面边界层流动的迭代算法, 该算法适用于需要特殊迭代过程的轴向及周向流动均匀情况. 计算了不同旋转速度和吸气强度组合工况下的边界层流动, 其周向速度和湍流强度分布与基于Reynolds应力湍流模型的计算结果非常接近. 并且表明, 当Reynolds应力湍流模型数值模拟预测内筒边界层为稳定层流时, 该方法也再现了相同初始条件下的层流边界层.  相似文献   

16.
提出了湍流边界层的一种简单、快速计算方法, 用以求解强吸气作用下旋转圆筒表面边界层流动. 首先, 理论分析了同心圆筒间的旋转流体运动, 外筒静止、内筒旋转且为多孔吸气条件. 强吸气情况下旋转流动主要表现为内筒壁面附近的边界层流动, 基于这一事实得到了周向速度分布的解析表达式. 其次, 通过引入新参数扩展Cebeci-Smith代数湍流模型, 使其能考虑流线曲率、壁面吸气、低Reynolds数效应等因素. 针对这些因素的综合影响, 采用解析修正和经验参数对模型进行调整. 同时, 基于Reynolds应力湍流模型的仿真结果, 校准代数湍流模型中的经验参数. 最后, 给出基于广义Cebeci-Smith湍流模型的旋转壁面边界层流动的迭代算法, 该算法适用于需要特殊迭代过程的轴向及周向流动均匀情况. 计算了不同旋转速度和吸气强度组合工况下的边界层流动, 其周向速度和湍流强度分布与基于Reynolds应力湍流模型的计算结果非常接近. 并且表明, 当Reynolds应力湍流模型数值模拟预测内筒边界层为稳定层流时, 该方法也再现了相同初始条件下的层流边界层.   相似文献   

17.
By treating it as a contact discontinuity in the density field, a free surface between two immiscible fluids can be automatically ‘captured’ by the enforcement of conservation laws. A surface‐capturing method of this kind requires no special tracking or fitting treatment for the free surface, thereby offering the advantage of algorithm simplicity over the surface‐tracking or the surface‐fitting method. A surface‐capturing method based on a new multi‐fluid incompressible Navier–Stokes formulation is developed. It is applied to a variety of free‐surface flows, including the Rayleigh–Taylor instability problem, the ship waves around a Wigley hull and a model bubble‐rising problem to demonstrate the validity and versatility of the present method. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

18.
Details are given of the development of a two‐dimensional vertical numerical model for simulating unsteady free‐surface flows, using a non‐hydrostatic pressure distribution. In this model, the Reynolds equations and the kinematic free‐surface boundary condition are solved simultaneously, so that the water surface elevation can be integrated into the solution and solved for, together with the velocity and pressure fields. An efficient numerical algorithm has been developed, deploying implicit parameters similar to those used in the Crank–Nicholson method, and generating a block tri‐diagonal algebraic system of equations. The model has been applied to simulate a range of unsteady flow problems involving relatively strong vertical accelerations. The results show that the numerical algorithm described is able to produce accurate predictions and is also easy to apply. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

19.
A six degrees of freedom (6DOF) algorithm is implemented in the open‐source CFD code REEF3D. The model solves the incompressible Navier–Stokes equations. Complex free surface dynamics are modeled with the level set method based on a two‐phase flow approach. The convection terms of the velocities and the level set method are treated with a high‐order weighted essentially non‐oscillatory discretization scheme. Together with the level set method for the free surface capturing, this algorithm can model the movement of rigid floating bodies and their interaction with the fluid. The 6DOF algorithm is implemented on a fixed grid. The solid‐fluid interface is represented with a combination of the level set method and ghost cell immersed boundary method. As a result, re‐meshing or overset grids are not necessary. The capability, accuracy, and numerical stability of the new algorithm is shown through benchmark applications for the fluid‐body interaction problem. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
An implicit method is developed for solving the complete three‐dimensional (3D) Navier–Stokes equations. The algorithm is based upon a staggered finite difference Crank‐Nicholson scheme on a Cartesian grid. A new top‐layer pressure treatment and a partial cell bottom treatment are introduced so that the 3D model is fully non‐hydrostatic and is free of any hydrostatic assumption. A domain decomposition method is used to segregate the resulting 3D matrix system into a series of two‐dimensional vertical plane problems, for each of which a block tri‐diagonal system can be directly solved for the unknown horizontal velocity. Numerical tests including linear standing waves, nonlinear sloshing motions, and progressive wave interactions with uneven bottoms are performed. It is found that the model is capable to simulate accurately a range of free‐surface flow problems using a very small number of vertical layers (e.g. two–four layers). The developed model is second‐order accuracy in time and space and is unconditionally stable; and it can be effectively used to model 3D surface wave motions. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号