首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Subsequent yield surfaces for aluminum alloys are determined for three proportional loading paths (i.e., axial, hoop, and combined hoop and axial stress) using 10 με deviation from linearity as the definition of yield. This paper is in continuation with Parts I and II of the author’s previous papers on subsequent yield surfaces under tension–torsion (σ11–√3σ12) stress space using similar small offset definition of yield. In the current paper comprehensive experimental results on subsequent yield surfaces under tension–tension (σ11σ22) stress space are presented. Comparison of subsequent yield surfaces under (σ11–√3σ12) stress space, investigated in the earlier papers, clearly indicated distinctive hardening behavior under various loading paths. However, subsequent yield surfaces for Al 6061–T 6511 (a low work hardening alloy) showed contraction and negative cross-effect with finite deformation as compared to the annealed 1100 Al (a high work hardening alloy) where expansion and positive cross-effect was observed.  相似文献   

2.
In the present study, the initial and subsequent yield surfaces in Al 6061-T6511, based on 10 με deviation from linearity definition of yield, are presented. The subsequent yield surfaces are determined during tension, free end torsion, and combined tension–torsion proportional loading paths after reaching different levels of strains. The yield surfaces are also obtained after linear, bi-linear and non-linear unloading paths after finite plastic deformation. The initial yield surface is very close to the von-Mises yield surface and the subsequent yield surfaces undergo translation and distortion. In the case of this low work hardening material, the size of the yield surfaces is smaller and negative cross-effect is observed with finite plastic deformation. The subsequent yield have a usual “nose” in the loading direction and flattened shape in the reverse loading direction; the observed nose is more dominant in the case of tension and combined tension–torsion loading than in torsional loading. The size of the yield surfaces after unloading is smaller than the initial yield surface but larger than subsequent yield surfaces obtained during prior loading, show much smaller cross-effect, and the shape of these yield surfaces depends strongly on the loading and unloading paths. Elastic constants (Young’s and shear moduli) are also measured within each subsequent yield surfaces. Evolution of these constants with finite deformation is also presented. The decrease of the two moduli is found to be much smaller than reported earlier in tension by Cleveland and Ghosh [Cleveland, R.M., Ghosh, A.K., 2002. Inelastic effects on springback in metals. Int. J. Plast. 18, 769–785]. Part-II and III [(Khan et al., 2009a) and (Khan et al., 2009b)] of the papers will include experimental results on annealed 1100 Al (a very high work hardening material) and on both Al alloys (Al6061-T6511 and annealed 1100 Al) in tension- tension stress space, respectively. The results for both cases are quite different than the ones that are presented in this paper.  相似文献   

3.
Based on pair functional potentials, Cauchy-Born rule and slip mechanism, a material model assembling with spring-bundle components, a cubage component and slip components is established to describe the elasto-plastic damage constitutive relation under finite deformation. The expansion/shrink, translation and distortion of yield surfaces can be calculated based on the hardening rule and Bauschinger effect defined on the slip component level. Both kinematic and isotropic hardening are included. Numerical simulations and predictions under tension, torsion, and combined tension-torsion proportional/non-proportional loading are performed to obtain the evolution of subsequent yield surfaces and elastic constants and compare with two sets of experimental data in literature, one for a very low work hardening aluminum alloy Al 6061-T6511, and another for a very high work hardening aluminum alloy annealed 1100 Al. The feature of the yield surface in shape change, which presents a sharp front accompanied by a blunt rear under proportional loading, is described by the latent hardening and Bauschinger effect of slip components. Further, the evolution law of subsequent yield surfaces under different proportional loading paths is investigated in terms of their equivalence. The numerical simulations under non-proportional loading conditions for annealed 1100 Al are performed, and the subsequent yield surfaces exhibit mixed cross effect because the kinematic hardening and isotropic hardening follow different evolution tendency when loading path changes. The results of non-proportional loading demonstrate that the present model has the ability to address the issue of complex loading due to the introduction of state variables on slip components. Moreover, as an elasto-plastic damage constitutive model, the present model can also reflect the variation of elastic constants through damage defined on the spring-bundle components.  相似文献   

4.
Results from a series of multiaxial loading experiments on the Ti–6Al–4V titanium alloy are presented. Different loading conditions are applied in order to get the comprehensive response of the alloy. The strain rates are varied from the quasi-static to dynamic regimes and the corresponding material responses are obtained. The specimen is deformed to large strains in order to study the material behavior under finite deformation at various strain rates. Torsional Kolsky bar is used to achieve shear strain rates up to 1000 s−1. Experiments are performed under non-proportional loading conditions as well as dynamic torsion followed by dynamic compression at various temperatures. The non-proportional loading experiments comprise of an initial uniaxial loading to a certain level of strain followed by biaxial loading, using a channel-type die at various rates of loadings. All the non-proportional experiments are carried out at room temperature. Experiments are also performed to investigate the anisotropic behavior of the alloy. An orthotropic yield criterion [proposed by Cazacu, O., Plunkett, B., Barlat, F., 2005. Orthotropic yield criterion for hexagonal closed packed metals. International Journal of Plasticity 22, 1171–1194.] for anisotropic hexagonal closed packed materials with strength differential is used to generate the yield surface. Based on the definition of the effective stress of this yield criterion, the observed material response for the different loading conditions under large deformation is modeled using the Khan–Huang–Liang (KHL) equation assuming isotropic hardening. The model constants used in the present study, were pre-determined from the extensive uniaxial experiments presented in the earlier paper [Khan, A.S., Suh, Y.S., Kazmi R., 2004. Quasi-static and dynamic loading responses and constitutive modeling of titanium alloys. International Journal of Plasticity 20, 2233–2248]. The model predictions are found to be extremely close to the observed material response.  相似文献   

5.
Sheet metal forming processes generally involve non-proportional strain paths including springback, leading to the Bauschinger effect, transient hardening, and permanent softening behavior, that can be possibly modeled by kinematic hardening laws. In this work, a stress integration procedure based on the backward-Euler method was newly derived for a nonlinear combined isotropic/kinematic hardening model based on the two-yield’s surfaces approach. The backward-Euler method can be combined with general non-quadratic anisotropic yield functions and thus it can predict accurately the behavior of aluminum alloy sheets for sheet metal forming processes. In order to characterize the material coefficients, including the Bauschinger ratio for the kinematic hardening model, one element tension–compression simulations were newly tried based on a polycrystal plasticity approach, which compensates extensive tension and compression experiments. The developed model was applied for a springback prediction of the NUMISHEET’93 2D draw bend benchmark example.  相似文献   

6.
周春田  勾秋静 《力学学报》1992,24(5):567-573
本文研究了45#钢和LY-12CZ铝合金在室温条件下拉扭复合比例及非比例加载时的循环硬化特性,其结果表明不同加载路径循环硬化程度不同,纯扭硬化程度最小,圆形路径硬化程度最大。着重研究了不同循环历史对后面循环稳定应力幅值的影响。  相似文献   

7.
A series of experiments has been conducted on oxygen free high conductivity (OFHC) copper hollow cylinders under cyclic free-end torsion and biaxial tension–torsion at large strains. In addition, equations are developed to account for the finite rotation and strains in electrical resistance strain gages. In free-end cyclic torsion experiments with shear strain range equal to 23%, a significant strain in the axial direction is observed and it accumulates with a constant rate cycle by cycle. In the biaxial tension–torsion (multiaxial ratchetting) experiments, in which the primary (constant) axial stress is larger than the initial yield stress of the material, the loading conditions are varied to determine the influence of primary axial stress, cyclic shear strain range, pre-cyclic hardening and loading sequence on multiaxial ratchetting. Some important experimental features are high-lighted and recommended to help modeling efforts later.  相似文献   

8.
Some novel discriminating multiaxial cyclic strain paths with incremental and random sequences were used to investigate cyclic deformation behavior of materials with low and high sensitivity to non-proportional loadings. Tubular specimens made of 1050 QT steel with no non-proportional hardening and 304L stainless steel with significant non-proportional hardening were used. 1050 QT steel was found to exhibit very similar behavior under various multiaxial loading paths, whereas significant effects of loading sequence were observed for 304L stainless steel. In-phase cycles with a random sequence of axial-torsion cycles on an equivalent strain circle were found to cause cyclic hardening levels similar to 90° out-of-phase loading of 304L stainless steel. In contrast, straining with a small increment of axial-torsion on an equivalent strain circle results in higher stress than for in-phase loading of 304L stainless steel, but the level of hardening is lower than for 90° out-of-phase loading. Tanaka’s non-proportionality parameter coupled with a Armstrong–Fredrick incremental plasticity model, and Kanazawa et al.’s empirical formulation as a representative of such empirical models were used to predict the stabilized stress response of the two materials under variable amplitude axial-torsion strain paths. Consistent results between experimental observations and predictions were obtained by employing the Tanaka’s non-proportionality parameter. In contrast, the empirical model resulted in significant over-prediction of stresses for 304L stainless steel.  相似文献   

9.
The aim of this work is to construct yield surfaces to describe initial yielding and characterize hardening behavior of a highly anisotropic material. A methodology for constructing yield surfaces for isotropic materials using axial–torsion loading is extended to highly anisotropic materials. The technique uses a sensitive definition of yielding based on permanent strain rather than offset strain, and enables multiple yield points and multiple yield surfaces to be conducted on a single specimen. A target value of 20 × 10−6 is used for Al2O3 fiber reinforced aluminum laminates having a fiber volume fraction of 0.55. Sixteen radial probes are used to define the yield locus in the axial–shear stress plane. Initial yield surfaces for [04], [904], and [0/90]2 fibrous aluminum laminates are well described by ellipses in the axial–shear stress plane having aspect ratios of 10, 2.5, and 3.3, respectively. For reference, the aspect ratio of the Mises ellipse for an isotropic material is 1.73. Initial yield surfaces do not have a tension–compression asymmetry. Four overload profiles (plus, ex, hourglass, and zee) are applied to characterize hardening of a [0/90]2 laminate by constructing 30 subsequent yield surfaces. Parameters to describe the center and axes of an ellipse are regressed to the yield points. The results clearly indicate that kinematic hardening dominates so that material state evolution can be described by tracking the center of the yield locus. For a nonproportional overload of (στ) = (500, 70) MPa, the center of the yield locus translated to (στ) = (430, 37) MPa and the ellipse major axis was only 110 MPa.  相似文献   

10.
11.
In this part, the Khan–Huang–Liang (KHL) constitutive model was extended to account for kinematic hardening characteristic behavior of materials. The extended model is then generalized and used to simulate experimental response of oxygen free high conductivity (OFHC) copper under cyclic shear straining and biaxial tension–torsion (multiaxial ratchetting) experiments presented in Part I (Khan et al., 2007). In addition, a new modification for the non-linear kinematic hardening rule of Karim–Ohno (Abdel-Karim and Ohno, 2000) is proposed to simulate multiaxial ratchetting behaviors. Although, the kinematic hardening contributes the most to the response, it is shown that, the loading rate effect, and a coupled isotropic and kinematic hardening effect should also be considered while simulating the multiaxial ratchetting behavior of OFHC copper. Furthermore, the newly modified kinematic hardening rules is able to fairly well simulate the multiaxial ratchetting experiments under different loading conditions, irrespective of the value of applied axial tensile stress, shear strain amplitude, pre-cyclic hardening and/or loading sequence.  相似文献   

12.
The modeling of anisotropic hardening, in particular for non-proportional loading paths, is a challenging task for advanced macroscopic models. The complex distortion of the yield locus is related to the activation and cross-hardening of different slip systems, depending on crystallographic orientations. These physical mechanisms can be taken into account in polycrystalline models but the computation times are enormous. The novel approach detailed in Part I (Rousselier et al., 2009) consists in: (i) drastically reducing the number of crystallographic orientations to save the computation cost, (ii) applying a parameter calibration procedure to obtain a good agreement with the experimental database. This methodology is first applied here to the anisotropic hardening in the proportional loadings of the strongly anisotropic aluminum alloy of Part I. Very good modeling is achieved with only eight crystallographic orientations. Different levels of additional hardening in biaxial proportional loading as compared to uniaxial loading can be modeled with the same polycrystalline model. For this, only the parameter calibration has to be performed with different databases. The same methodology has also been applied for the modeling of isotropic behavior. The best compromise between model accuracy and numerical cost is obtained with fourteen orientations. The deviations from isotropy are acceptable in all loading directions. Different levels of hardening in orthogonal loading: simple shear followed by simple tension, are achieved without any modification of the model equations. Only the parameter calibration has to be performed with different hardening levels in the database. FE calculations of a deep drawing test have been performed. The CPU time of the polycrystalline model is only five times larger than that with the simple von Mises model. The CPU time with texture evolution is further increased by a factor of two. The effects of texture evolution in rolling of the initially isotropic fcc material have been investigated. The resulting texture and hardening are qualitatively good.  相似文献   

13.
The initial and subsequent yield surfaces for an anisotropic and pressure-dependent 2D stochastic cellular material, which represents solid foams, are investigated under biaxial loading using finite element analysis. Scalar measures of stress and strain, namely characteristic stress and characteristic strain, are used to describe the constitutive response of cellular material along various stress paths. The coupling between loading path and strain hardening is then investigated in characteristic stress–strain domain. The nature of the flow rule that best describes the plastic flow of cellular solid is also investigated. An incremental plasticity framework is proposed to describe the pressure-dependent plastic flow of 2D stochastic cellular solids. The proposed plasticity framework adopts the anisotropic and pressure-dependent yield function recently introduced by Alkhader and Vural [Alkhader M., Vural M., 2009a. An energy-based anisotropic yield criterion for cellular solids and validation by biaxial FE simulations. J. Mech. Phys. Solids 57(5), 871–890]. It has been shown that the proposed yield function can be simply calibrated using elastic constants and flow stresses under uniaixal loading. Comparison of stress fields predicted by continuum plasticity model to the ones obtained from FE analysis shows good agreement for the range of loading paths and strains investigated.  相似文献   

14.
Recently non-proportional deformation has received increased attention from researchers working in the area of experimental and computational modeling of metal deformation. However, most of them are numerical in nature with limited experimental data available, making it further difficult to model non-proportional deformation. In the present work, two-stage uniaxial tests, along with uniaxial cyclic and biaxial tests for different stress ratios, have been performed to evaluate deformation behavior of ultra-low carbon high strength automotive steel. Behaviors like cross-effect and hardening stagnation, which are attributed to the evolution of complex dislocation structures, were observed in this steel. It was also noticed that this steel exhibits tension-compression asymmetry. As for constitutive modeling, a modified asymmetric yield function is proposed to be used with a combined isotropic-kinematic hardening model. Also methods to account for the hardening stagnation during reverse loading and the cross-effect during two-stage deformation are proposed. The resulting constitutive model showed reasonably good agreement with experimental results.  相似文献   

15.
Our recent investigation on the formability of Al alloy tubes under combined internal pressure and axial load is expanded by examining the effect of the loading path traced. A set of Al-6260-T4 tubes were loaded along orthogonal stress paths to failure and the results are compared to those of the corresponding radial paths. It is confirmed that failure strains are path-dependent, but also is demonstrated that failure stresses become path-dependent if the prestrain is significant. The experiments are simulated using the previously developed finite element models and the calibration of the Yld2000-2D [Barlat, F., Brem, J.C., Yoon, J.W., Chung, K., Dick, R.E., Lege, D.J., Pourboghrat, F., Choi, S.-H., Chu, E., 2003. Plane stress yield function for aluminum alloy sheets-part I: theory. Int. J. Plasticity 19, 1297--1319] anisotropic yield function shown in [Korkolis, Y.P., Kyriakides, S., 2008b. Inflation and burst of anisotropic aluminum tubes. Part II: an advanced yield function including deformation-induced anisotropy. Int. J. Plasticity 24, 1625–1637] to yield accurate predictions of rupture for nine radial paths. The models are shown to reproduce the path dependence of the failure stresses and strains quite well. A group of additional radial and corner paths are subsequently examined numerically to enrich the existing data on path-dependence of failure. It is again shown that the amount of plastic prestraining in either of the two directions influences the difference of the failure stresses and strains between the radial and the corner stress paths.  相似文献   

16.
This work follows a series of experiments carried out earlier at INSA of Rouen (Hassan, T., Taleb, L., Krishna, S., 2008. Influence of non-proportional loading paths on ratcheting responses and simulations by two recent cyclic plasticity models. Int. J. Plast. 24, 1863–1889). It investigates the elastoplastic cyclic behavior of a 304L stainless steel at room temperature. In a first step the cross path effect on ratcheting is confirmed, as well as the crucial role of the loading path non-proportionality. Strain controlled tests are also conducted for different strain amplitudes and loading paths. Cross-hardening effect appears more important when the shearing sequence is followed by the axial one. Moreover for alternating axial and shearing cycles, this phenomenon occurs after each crossing sequence leading to a very significant strain hardening, at least of the same order as the one obtained after a circular strain path. Yet, the magnitude of the observed over hardening does not necessarily seem a function of the cumulated plastic strain.  相似文献   

17.
In a recent study [Korkolis, Y.P., Kyriakides, S., 2008. Inflation and burst of anisotropic aluminum tubes for hydroforming applications. Int’l. J. Plasticity 24, 509–543], the formability of aluminum tubes was investigated using a combination of experimental and numerical approaches. The tubes were loaded to failure under combined internal pressure and axial load along radial paths in the engineering stress space. The experiments were then simulated using appropriate FE models and two established anisotropic yield functions. It was found that for some loading paths the computed deformations did not agree with the experimental ones, whereas rupture was generally overpredicted. In the current study the problem is tackled using a more advanced yield function [Barlat, F., Brem, J.C., Yoon, J.W., Chung, K., Dick, R.E., Lege, D.J., Pourboghrat, F., Choi, S.-H., Chu, E., 2003. Plane stress function for aluminum alloy sheets – part I: theory. Int’l. J. Plasticity 19, 1297–1319]. Three different calibration schemes of this function are employed, in two of which the experimentally observed deformation-induced anisotropy is taken into account. It is demonstrated that both deformation and failure can ultimately be predicted successfully, albeit arduously, using a hybrid procedure detailed herein.  相似文献   

18.
A theory of plasticity previously formulated by the author to discuss the free-end torsion problem has been extended to the more general case of combined axial-torsion of a thin-walled tube. This paper is devoted to the discussion of evolution of the yield surface due to different (proportional and non-proportional) loading paths with pre-strains in the large strain range. Experimental yield surfaces with axial and torsion pre-strains of magnitudes up to 40 and 45%, respectively, are presented, and theoretical results are compared with the experimental data.  相似文献   

19.
A temperature-dependent anisotropic material model was developed for two aluminum alloys AA5182-O and AA5754-O and their anisotropy parameters were established. A coupled thermo-mechanical finite element analysis of the forming process was then performed for the temperature range 25–260 °C (77–500 °F) at different strain rates. In the developed model, the anisotropy coefficients for Barlat’s YLD2000-2d anisotropic yield function [Barlat, F., Brem, J.C., Yoon, J.W., Chung, K., Dick, R.E., Lege, D.J., Pourboghrat, F., Choi, S.H., Chu, E., 2003. Plane stress yield function for aluminum alloy sheets – Part 1: Theory. Int. J. Plasticity 19, 1297–1319] in the plane-stress condition and the parameters for the isotropic strain hardening were established as a function of temperature. The temperature-dependent anisotropic yield function was then implemented into the commercial FEM code LS-DYNA as a user material subroutine (UMAT) using the cutting-plane algorithm for the integration of a general class of elastoplastic constitutive models [Abedrabbo, N., Pourboghrat, F., Carsley, J., 2006b. Forming of aluminum alloys at elevated temperatures – Part 2: Numerical modeling and experimental verification. Int. J. Plasticity 22 (2), 342–737]. The temperature-dependent material model was used to simulate the coupled thermo-mechanical finite element analysis of the stamping of an aluminum sheet using a hemispherical punch under the pure stretch boundary condition (no material draw-in was allowed). Simulation results were compared with experimental data at several elevated temperatures to evaluate the accuracy of the UMAT’s ability to predict both forming behavior and failure locations. Two failure criteria were used in the analysis; the M–K strain based forming limit diagrams (ε-FLD), and the stress based forming limit diagrams (σ-FLD). Both models were developed using Barlat’s YLD2000-2d anisotropic model for the two materials at several elevated temperatures. Also, as a design tool, the Genetic Algorithm optimization program HEEDS was linked with the developed thermo-mechanical models and used to numerically predict the “optimum” set of temperatures that would generate the maximum formability for the two materials in the pure stretch experiments. It was found that a higher temperature is not needed to form the part, but rather the punch should be maintained at the lowest temperature possible for maximum formability.  相似文献   

20.
In this study, two multi-scale analyses codes are newly developed by combining a homogenization algorithm and an elastic/crystalline viscoplastic finite element (FE) method (Nakamachi, E., 1988. A finite element simulation of the sheet metal forming process. Int. J. Numer. Meth. Eng. 25, 283–292; Nakamachi, E., Dong, X., 1996. Elastic/crystalline viscoplastic finite element analysis of dynamic deformation of sheet metal. Int. J. Computer-Aided Eng. Software 13, 308–326; Nakamachi, E., Dong, X., 1997. Study of texture effect on sheet failure in a limit dome height test by using elastic/crystalline viscoplastic finite element analysis. J. Appl. Mech. Trans. ASME(E) 64, 519–524; Nakamachi, E., 1998. Elastic/crystalline viscoplastic finite element modeling based on hardening–softening evaluation equation. In: Proc. of the 6th NUMIFORM, pp. 315–321; Nakamachi, E., Hiraiwa, K., Morimoto, H., Harimoto, M., 2000a. Elastic/crystalline viscoplastic finite element analyses of single- and poly-crystal sheet deformations and their experimental verification. Int. J. Plasticity 16, 1419–1441; Nakamachi, E., Xie, C.L., Harimoto, M., 2000b. Drawability assessment of BCC steel sheet by using elastic/crystalline viscoplastic finite element analyses. Int. J. Mech. Sci. 43, 631–652); (1) a “semi-implicit” finite element (FE) code and (2) a “dynamic explicit” FE code. These were applied to predict the plastic strain induced yield loci and the formability of sheet metal in the macro scale, and simultaneously the crystal texture and hardening evolutions in the micro scale. The isotropic and kinematical hardening laws are employed in the crystalline plasticity constitutive equation. For the multi-scale structure, two-scales are considered. One is a microscopic polycrystal structure and the other a macroscopic elastic plastic continuum. We measure crystal morphologies by using the SEM-EBSD apparatus with a unit of about 3.8 μm voxel, and define a three dimensional (3D) representative volume element (RVE) for the micro polycrystal structure, which satisfy the periodicity condition of crystal orientation distribution. A “micro” finite element modeling technique is newly established to minimize the total number of finite elements in the micro scale. Next, the “semi-implicit” crystallographic homogenization FE code, which employs the SEM-EBSD measured RVE, is applied to the 99.9% pure-iron uni-axial tensile problem to predict the texture evolution and the subsequent yield loci in the various strain paths. These “semi implicit” results reveal that the plastic strain induced anisotropy in the micro and macro levels can be predicted by our FE analyses. The kinematical hardening law leads a distinct plastic strain induced anisotropy. Our “dynamic-explicit” FE code is applied to simulate the limit dome height (LDH) test problem of the mild steel DQSK, the high strength steel HSLA and the aluminum alloy AL6022 sheet metals, which were adopted as the NUMISHEET2005 Benchmark sheet metals (Smith, L.M., Pourboghrat, F., Yoon, J.-W., Stoughton, T.B., 2005. NUMISHEET2005. In: Proc. of 6th Int. Conf. Numerical Simulation of 3D Sheet Metal Forming Processes, PART A and B(Benchmark), pp. 409–451) to estimate formability. The “dynamic explicit” results reveal that the initial crystal orientation distribution has a large affects to a plastic strain induced texture and anisotropic hardening evolutions and sheet formability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号