首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The controlled secondary self‐assembly of amphiphilic molecules in solution is theoretically and practically significant in amphiphilic molecular applications. An amphiphilic β‐cyclodextrin (β‐CD) dimer, namely LA‐(CD)2, has been synthesized, wherein one lithocholic acid (LA) unit is hydrophobic and two β‐CD units are hydrophilic. In an aqueous solution at room temperature, LA‐(CD)2 self‐assembles into spherical micelles without ultrasonication. The primary micelles dissociates and then secondarily form self‐assemblies with branched structures under ultrasonication. The branched aggregates revert to primary micelles at high temperature. The ultrasound‐driven secondary self‐assembly is confirmed by transmission electron microscopy, dynamic light scattering, 1H NMR spectroscopy, and Cu2+‐responsive experiments. Furthermore, 2D NOESY NMR and UV/Vis spectroscopy results indicate that the formation of the primary micelles is driven by hydrophilic–hydrophobic interactions, whereas host–guest interactions promote the formation of the secondary assemblies. Additionally, ultrasonication is shown to be able to effectively destroy the primary hydrophilic–hydrophobic balances while enhancing the host–guest interaction between the LA and β‐CD moieties at room temperature.  相似文献   

2.
Highly conductive, crystalline, polymer electrolytes, β‐cyclodextrin (β‐CD)–polyethylene oxide (PEO)/LiAsF6 and β‐CD–PEO/NaAsF6, were prepared through supramolecular self‐assembly of PEO, β‐CD, and LiAsF6/NaAsF6. The assembled β‐CDs form nanochannels in which the PEO/X+ (X=Li, Na) complexes are confined. The nanochannels provide a pathway for directional motion of the alkali metal ions and, at the same time, separate the cations and the anions by size exclusion.  相似文献   

3.
The increased global concern on environmental protection has made researchers focus their attention on new and more efficient methods of pollutant removal. In this research, novel nanocomposite adsorbents,i.e., magnetic hydroxyapatite (Fe3O4@HA) and magnetic hydroxyapatite β‐cyclodextrin (Fe3O4@HA‐CD) were synthesized and used for heavy metal removal. The adsorbents were characterized by FTIR, XRD, TGA, VSM, and SEM. In order to investigate the effect of β‐cyclodextrin (β‐CD) removal efficiency, adsorption results of nine metal ions were compared for both adsorbents. β‐CD showed the most increasing effect for Cd2+ and Cu2+ removal, so these two ions were selected for further studies. The effect of diverse parameters including pH, contact time, initial metal ion concentration and adsorbent dosage on the adsorption process was discussed. The optimum pH was 6 and adsorption equilibrium was achieved after 1 hr. Adsorption kinetic data were well fitted by pseudo‐second‐order model proposing that metal ions were adsorbed via chemical reaction. Adsorption isotherm was best described by the Langmuir model, and maximum adsorption capacity for Cd2+ and Cu2+ was 100.00 and 66.66 (mg/g), respectively. Desorption experiment was also done, and the most efficient eluent used for desorption of metal ions was EDTA (0.001 M) with 91% and 88% of Cd2+ and Cu2+ release, respectively. Recyclability studies also showed a 19% decrease in the adsorption capacity of the adsorbent after five cycles of regeneration. Therefore, the synthesized adsorbents were recognized as potential candidates for heavy metal adsorption applications.  相似文献   

4.
In this article, our main goal is to combine hyperbranched polymer with β‐cyclodextrin (β‐CD) to establish a novel functional polymer species with core‐shell structure and supramolecular system for further application in inclusion technologies and the complex drugs delivery system. Therefore, two β‐CD polymer brushes based on hyperbranched polycarbosilane (HBP) as a hydrophobic core and poly(N,N‐dimethylaminoethyl methacrylate) (PDMA) carrying β‐CD units as a hydrophilic shell were synthesized. Hyperbranched polycarbosilane macroinitiator carrying ? Cl groups (HBP‐Cl) was also prepared by using 1,1,3,3‐tetrmethyldisiloxane, allyl alcohol, and chloroacetyl chloride as reagents. The molecular structures of HBP‐Cl macroinitiator and β‐CD polymer brushes were characterized by Fourier transform infrared spectroscopy (FTIR), 1H nuclear magnetic resonance (1H NMR), 13C nuclear magnetic resonance (13C NMR) spectroscopies, size exclusion chromatography/multi‐angle laser light scattering (SEC/MALLS) and laser particle size analyzer. The results indicate that the grafted chain length of two β‐CD polymer brushes can be controlled by changing the feed ratio. Differential scanning calorimetry (DSC) results show that two β‐CD polymer brushes have two glass transition temperatures (Tgs) from a hydrophobic core part and a hydrophilic shell part, respectively, and the Tg from PDMA is higher than that of HBP‐g‐PDMA. Thermalgravimetric analyzer (TGA) analysis indicates that the thermostability of two β‐CD polymer brushes is higher than that of HBP, but is lower than that of HBP‐g‐PDMA. Using phenolphthalein (PP) as a guest molecule, molecular inclusion behaviors for two β‐CD polymer brushes were studied. It reveals that two β‐CD polymer brushes possess molecular inclusion capability in PP buffer solution with a fixed concentration. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5036–5052, 2008  相似文献   

5.
The noncovalent interactions between 4′, 6‐diamidino‐2‐phenylindole (DAPI) and sulfobutylether β‐cyclodextrin (SBE7β‐CD) are evaluated by using photochemical measurements and compared with that of native β‐CD. Contrasting recognition behavior and intriguing modulations in the photochemical behavior of DAPI were observed. In particular, a large enhancement in the fluorescence emission and excited‐state lifetime were seen upon binding to SBE7β‐CD, with the SBE7β‐CD inclusion complex being approximately 1000 times stronger than that of β‐CD. The ensuing fluorescence “turn on” was demonstrated to be responsive to chemical stimuli, such as metal ions and adamantylanmine (AD). Upon addition of Ca2+/AD, nearly quantitative dissociation of the complex was established to regenerate the free dye and result in fluorescence “turn off”. The SO3? groups are believed to be critical for the strong and selective binding of the chromophore and the stimuli‐responsive tuning. This is as an important design criterion for the optimization of host–guest properties through supramolecular association, which is relevant for drug‐delivery applications.  相似文献   

6.
《化学:亚洲杂志》2017,12(20):2734-2743
We explored garnet‐structured oxide materials containing 3d transition‐metal ions (e.g., Co2+, Ni2+, Cu2+, and Fe3+) for the development of new inorganic colored materials. For this purpose, we synthesized new garnets, Ca3Sb2Ga2ZnO12 ( I ) and Ca3Sb2Fe2ZnO12 ( II ), that were isostructural with Ca3Te2Zn3O12. Substitution of Co2+, Ni2+, and Cu2+ at the tetrahedral Zn2+ sites in I and II gave rise to brilliantly colored materials (different shades of blue, green, turquoise, and red). The materials were characterized by optical absorption spectroscopy and CIE chromaticity diagrams. The Fe3+‐containing oxides showed band‐gap narrowing (owing to strong sp–d exchange interactions between Zn2+ and the transition‐metal ion), and this tuned the color of these materials uniquely. We also characterized the color and optical absorption properties of Ca3Te2Zn3−x Cox O12 (0<x ≤2.0) and Cd3Te2Zn3−x Cox O12 (0<x ≤1.0), which display brilliant blue and green‐blue colors, respectively. The present work brings out the role of the distorted tetrahedral coordination geometry of transition‐metal ions and ligand–metal charge transfer (which is manifested as narrowing of the band gap) in producing brilliantly colored garnet‐based materials.  相似文献   

7.
Transition metal complexes of type M(L)2(H2O)x were synthesized, where L is deprotonated Schiff base 2,4‐dihalo‐6‐(substituted thiazol‐2‐ylimino)methylphenol derived from the condensation of aminothiazole or its derivatives with 2‐hydroxy‐3‐halobenzaldehyde and M = Co2+, Ni2+, Cu2+ and Zn2+ (x = 0 for Cu2+ and Zn2+; x = 2 for Co2+ and Ni2+). The synthesized Schiff bases and their metal complexes were thoroughly characterized using infrared, 1H NMR, electronic and electron paramagnetic resonance spectroscopies, elemental analysis, molar conductance and magnetic susceptibility measurements, thermogravimetric analysis and scanning electron microscopy. The results reveal that the bidentate ligands form complexes having octahedral geometry around Co2+ and Ni2+ metal ions while the geometry around Cu2+ and Zn2+ metal ions is four‐coordinated. The geometries of newly synthesized Schiff bases and their metal complexes were fully optimized in Gaussian 09 using 6–31 + g(d,p) basis set. Fluorescence quenching data reveal that Zn(II) and Cu(II) complexes bind more strongly to bovine serum albumin in comparison to Co(II) and Ni(II) complexes. The ligands and their complexes were evaluated for in vitro antibacterial activity against Escherichia coli ATCC 25922 (Gram negative) and Staphylococcus aureus ATCC 29213 (Gram positive) and cytotoxicity against lever hepatocellular cell line HepG2.  相似文献   

8.
Bipyridinophane–fluorene conjugated copolymers have been synthesized via Suzuki and Heck coupling reactions from 5,8‐dibromo‐2,11‐dithia[3]paracyclo[3](4,4′)‐2,2′‐bipyridinophane and suitable fluorene precursors. Poly[2,7‐(9,9‐dihexylfluorene)‐coalt‐5,8‐(2,11‐dithia[3]paracyclo[3](4,4′)‐2,2′‐bipyridinophane)] ( P7 ) exhibits large absorption and emission redshifts of 20 and 34 nm, respectively, with respect to its planar reference polymer Poly[2,7‐(9,9‐dihexylfluorene)‐co‐alt‐1,4‐(2,5‐dimethylbenzene)] ( P11 ), which bears the same polymer backbone as P7 . These spectral shifts originate from intramolecular aromatic C? H/π interactions, which are evidenced by ultraviolet–visible and 1H NMR spectra as well as X‐ray single‐crystal structural analysis. However, the effect of the intramolecular aromatic C? H/π interactions on the spectral shift in poly[9,9‐dihexylfluorene‐2,7‐yleneethynylene‐coalt‐5,8‐(2,11‐dithia[3]paracyclo[3](4,4′)‐2,2′‐bipyridinophane)] ( P10 ) is much weaker. Most interestingly, the quenching behaviors of these two conjugated polymers are largely dependent on the polymer backbone. For example, the fluorescence of P7 is efficiently quenched by Cu2+, Co2+, Ni2+, Zn2+, Mn2+, and Ag+ ions. In contrast, only Cu2+, Co2+, and Ni2+ ions can partially quench the fluorescence of P10 , but much less efficiently than the fluorescence of P7 . The static Stern–Volmer quenching constants of Cu2+, Co2+, and Ni2+ ions toward P7 are of the order of 106 M?1, being 1300, 2500, and 37,300 times larger than those of P10 , respectively. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4154–4164, 2006  相似文献   

9.
A new coordination polymer based on octamolybdate anions and copper(II)‐mebpa complex fragments, namely, [{Cu(mebpa)}2β‐Mo8O26] ( 1 ), where mebpa is bis(2‐pyridylmethyl)methylamine, has been synthesized under the hydrothermal reaction and characterized by single‐crystal X‐ray diffraction, IR, thermogravimetric analysis and cyclic voltammetry. 1 is formed from β‐[Mo8O26]4? anions with {Cu(mebpa)}2+ fragments covalently attached via terminal oxygen atoms into a ribbon‐like chain. The β‐[Mo8O26]4? anions act as sexadentate ligands and the CuII ions adopt the common Jahn‐Teller distorted “4+2” coordination. Owing to the weak C‐H···O hydrogen bonding interactions, two crystallographically independent {CuN3O3} octahedra are located in the A and B layers respectively. The chemically modified carbon paste electrode (MCPE) displays well‐defined cyclic voltammograms with three two‐electron reversible redox couples in acidic aqueous solution and electrocatalytic activities toward the reduction of nitrite.  相似文献   

10.
Two organic–inorganic hybrid compounds have been prepared by the combination of the 4‐[(E)‐2‐(pyridin‐1‐ium‐2‐yl)ethenyl]pyridinium cation with perhalometallate anions to give 4‐[(E)‐2‐(pyridin‐1‐ium‐2‐yl)ethenyl]pyridinium tetrachloridocobaltate(II), (C12H12N2)[CoCl4], (I), and 4‐[(E)‐2‐(pyridin‐1‐ium‐2‐yl)ethenyl]pyridinium tetrachloridozincate(II), (C12H12N2)[ZnCl4], (II). The compounds have been structurally characterized by single‐crystal X‐ray diffraction analysis, showing the formation of a three‐dimensional network through X—H...ClnM (X = C, N+; n = 1, 2; M = CoII, ZnII) hydrogen‐bonding interactions and π–π stacking interactions. The title compounds were also characterized by FT–IR spectroscopy and thermogravimetric analysis (TGA).  相似文献   

11.
We report on the synthesis of an H‐shaped polymer bonding β‐cyclodextrin (β‐CD) at branch points and influences of attached β‐CD on physical properties. First, a poly(ethylene glycol)(PEG)‐based functional macroinitiator bearing two azidos and four chlorines at chain‐ends (PEG‐2N3(‐4Cl)) was prepared via terminal modification reactions. Then, PEG‐2N3(‐4Cl) was applied to initiate the atom transfer radical polymerization of N‐isopropylacrylamide, leading to the synthesis of an H‐shaped block polymer with PEG as the central chain and poly(N‐isopropylacrylamide) (PNIPAM) as side‐arms (PEG‐2N3(‐4PNIPAM)). Azido groups were at the branch points of the polymer. Finally, the click reaction between PEG‐2N3(‐4PNIPAM) and alkynyl monosubstituted β‐cyclodextrin (β‐CD) afforded another H‐shaped polymer with two β‐CDs bonding at the polymer branch points (PEG‐2CD(‐4PNIPAM)). The glass transition temperature (Tg) and lower critical solution temperature (LCST) of the H‐shaped polymer increased after the attachment of β‐CD. The self‐assembly and thermal responsive behaviors, as well as the encapsulation behaviors of PEG‐2CD(‐4PNIPAM) were also altered. When temperature was below the LCSTs, PEG‐2N3(‐2PNIPAM) dissolved in water molecularly, whereas PEG‐2CD(‐4PNIPAM) could self‐assemble into nano‐sized micelles. After the LCST transitions, PEG‐2N3(‐4PNIPAM) aggregated into micron‐sized unstable particles, whereas PEG‐2CD(‐4PNIPAM) transformed into PNIPAM‐cored nanomicelles. Besides, PEG‐2CD(‐4PNIPAM) can encapsulate doxorubicin below its LCST due to the formation of micelles. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

12.
A conjugated polymer was synthesized by the polymerization of 4,7‐dibromobenzo[2,1,3]thiadiazole ( M‐1 ) with tri{1,4‐diethynyl‐2,5‐bis(2‐(2‐methoxyethoxy)‐ethoxy)}‐benzene ( M‐2 ) via Pd‐catalyzed Sonogashira reaction. The polymer shows strong orange fluorescence. The responsive optical properties of the polymer on various metal ions were investigated through photoluminescence and UV–vis absorption measurements. The polymer displays highly sensitive and selective on‐off Hg2+ fluorescence quenching property in tetrahydrofuran solution in comparison with the other cations including Mg2+, Zn2+, Co2+, Ni2+, Cu2+, Ag+, Cd2+, and Pb2+. More importantly, the fluorescent color of the polymer sensor disappears after addition of Hg2+, which could be easily detected by naked eyes. The results indicate that this kind of polymer sensor incorporating benzo[2,1,3]thiadiazole moiety as a ligand can be used as a novel colorimetric and fluorometric sensor for Hg2+ detection. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

13.
A new ferrocene functionalized macrocyclic receptor 1,8‐bis(ferrocenylmethyl)‐5,5,7,12,12,14‐hexamethyl‐1,4,8,11‐tetraazacyclotetradecane (R) has been designed and synthesized to study its potential application as chemosensor. The receptor has been characterized by spectral techniques and X‐ray diffraction. The compound crystallizes in the orthorhombic space group Pcab with four molecules in a unit cell (half‐a‐molecule in the asymmetric unit). The electrochemical studies of the receptor in dioxane–water (7:3 v/v, 25 °C) indicate that the receptor is pH‐dependent with a displacement of E1/2 to more anodic potentials with a decrease in the pH from 12 to 5. The electrochemical behaviour of R was also studied in the presence of Mn2+, Co2+, Ni2+, Cu2+ and Zn2+ in dioxane–water (7:3 v/v, 25 °C, [Bun4N][ClO4]), showing that upon complexation the ferrocene–ferrocenium half‐wave potential shifts anodically in relation to that of the free receptor. The maximum electrochemical shift (ΔE1/2) of 46 mV was found in the presence of Cu2+, followed by Co2+ (20 mV), Mn2+ (15 mV), Ni2+ (13 mV) and Zn2+ (9 mV). Moreover, the receptor R is able to electrochemically and selectively sense Cu2+ in the presence of the other transition metal cations studied. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

14.
Nylon 6/Cu2+-exchanged and Fe3+-exchanged montmorillonite nanocomposites have been prepared by a melt intercalation technique directly from Cu2+-exchanged and Fe3+-exchanged montmorillonite. Hexadecyltrimethylammonium bromide was chosen as the clay/matrix reactive compatibilizer. The intercalation spacing and the degree of dispersion were determined by X-ray diffraction and transmission electron microscopy. Also the thermal character of the nanocomposites prepared was analyzed by thermogravimetric analysis.  相似文献   

15.
The radical polymerization of Ntert‐butyl‐N‐allylacrylamide (t‐BAA) was carried out in a dimethyl sulfoxide/H2O mixture in the presence of β‐cyclodextrin (β‐CD). The polymerization proceeded with the complete cyclization of the t‐BAA unit and yielded optically active poly(t‐BAA). The IR spectrum of the obtained polymer showed that the cyclic structure in the polymer was a five‐membered ring. The optical activity of poly(t‐BAA) increased with an increasing molar ratio of β‐CD to the t‐BAA monomer. The interaction of β‐CD with t‐BAA was confirmed by 1H NMR and 13C NMR analyses of the polymerization system. It is suggested that interaction of the t‐BAA monomer with the hydrophobic cavity of β‐CD plays an important role in the asymmetric cyclopolymerization of t‐BAA. The radical copolymerization of t‐BAA with styrene (St), methyl methacrylate, ethyl methacrylate, or benzyl methacrylate (BMA) also produced optically active copolymers with a cyclic structure from the t‐BAA unit. St and BMA carrying a phenyl group were predicted to compete with t‐BAA for interaction with β‐CD in the copolymerization system. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 2098–2105, 2000  相似文献   

16.
A straightforward synthesis of amphiphilic β‐cyclodextrin‐poly(4‐acryloylmorpholine) (β‐CD‐PACM) polymers of controlled molecular weight, consisting of the radical polymerization of 4‐acryloylmorpholine in the presence of 6‐deoxy‐6‐mercapto‐β‐cyclodextrin (β‐CD‐SH) as chain‐transfer agent, has been established. These derivatives carry a single β‐cyclodextrin (β‐CD) moiety at one terminus and their average molecular weight is in the order of 104. Thus, their β‐CD content is ~ 10% by weight. No evidence of un‐functionalized PACM was found in the final products. The chain‐transfer constant (CT) of β‐CD‐SH was found to be 1.30 by independently determining the reaction constants of both chain‐transfer and propagation reactions. This ensures that the molecular weight, hence the β‐CD content of the polymers, does not significantly vary with conversion. These β‐CD‐PACM polymers are highly soluble in water as well as in several organic solvents such as chloroform and lower alcohols. They proved capable of solubilizing in water poorly soluble drugs such as 9‐[(2‐hydroxyethoxy)methyl]guanine (Acyclovir) and of gradually releasing them in aqueous systems. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1607–1617, 2008  相似文献   

17.
In this study, two poly(azomethine ether)s were synthesized and they can form inclusion compounds (ICs) with β‐cyclodextrin (β‐CD). Fourier transform infrared (FTIR) spectroscopy, 1H nuclear magnetic resonance spectroscopy (1H‐NMR), thermogravimetric analysis (TGA), X‐ray diffraction (XRD) have been utilized to observe the formation of polymer‐CD‐ICs. The differentiation in their FTIR spectra may indicate the formation of the inclusion compounds between poly(azomethine ether)s and β‐CD. Compared the 1H‐NMR of polymer‐CD‐ICs with β‐CD, proton signals belonging to both β‐CD and poly(azomethine ether)s can be found in the spectrum. The chemical shift of the protons H‐3, H‐5 has changed after the formation of inclusion compounds, which is perhaps due to the interaction of these protons with polymers. TGA scans showed the much higher decomposition temperatures observed for two polymer‐CD‐ICs may imply that polymer chains included inside the β‐CD's cavity can greatly improve β‐CD's stabilities. The X‐ray diffraction patterns were confirmed to be the new crystal structures.  相似文献   

18.
Studies of double‐stranded‐DNA binding have been performed with three isomeric bis(2‐(n‐pyridyl)‐1H‐benzimidazole)s (n=2, 3, 4). Like the well‐known Hoechst 33258, which is a bisbenzimidazole compound, these three isomers bind to the minor groove of duplex DNA. DNA binding by the three isomers was investigated in the presence of the divalent metal ions Mg2+, Co2+, Ni2+, Cu2+, and Zn2+. Ligand–DNA interactions were probed with fluorescence and circular dichroism spectroscopy. These studies revealed that the binding of the 2‐pyridyl derivative to DNA is dramatically reduced in the presence of Co2+, Ni2+, and Cu2+ ions and is abolished completely at a ligand/metal‐cation ratio of 1:1. Control experiments done with the isomeric 3‐ and 4‐pyridyl derivatives showed that their binding to DNA is unaffected by the aforementioned transition‐metal ions. The ability of 2‐(2‐pyridyl)benzimidazole to chelate metal ions and the conformational changes of the ligand associated with ion chelation probably led to such unusual binding results for the ortho isomer. The addition of ethylenediaminetetraacetic acid (EDTA) reversed the effects completely.  相似文献   

19.
The study reports the synthesis of complexes Co(HL)Cl2 ( 1 ), Ni(HL)Cl2 ( 2 ), Cu(HL)Cl2 ( 3 ), and Zn(HL)3Cl2 ( 4 ) with the title ligand, 5‐(pyrazin‐2‐yl)‐1,2,4‐triazole‐5‐thione (HL), and their characterization by elemental analyses, ESI‐MS (m/z), FT‐IR and UV/Vis spectroscopy, as well as EPR in the case of the CuII complex. The comparative analysis of IR spectra of the metal ion complexes with HL and HL alone indicated that the metal ions in 1 , 2 , and 3 are chelated by two nitrogen atoms, N(4) of pyrazine and N(5) of triazole in the thiol tautomeric form, whereas the ZnII ion in 4 is coordinated by the non‐protonated N(2) nitrogen atom of triazole in the thione form. pH potentiometry and UV/Vis spectroscopy were used to examine CoII, NiII, and ZnII complexes in 10/90 (v/v) DMSO/water solution, whereas the CuII complex was examined in 40/60 (v/v) DMSO/water solution. Monodeprotonation of the thione triazole in solution enables the formation of the L:M = 1:1 species with CoII, NiII and ZnII, the 2:1 species with CoII and ZnII, and the 3:1 species with ZnII. A distorted tetrahedral arrangement of the CuII complex was suggested on the basis of EPR and Vis/NIR spectra.  相似文献   

20.
A novel hexa‐armed and star‐shaped polymer containing cholesterol end‐capped poly(ε‐caprolactone) arms emanating from a phosphazene core (N3P3‐(PCL‐Chol)6) was synthesized by a combination of ring‐opening polymerization and “click” chemistry techniques. For this purpose, the terminal ? OH groups of the synthesized precursor (N3P3‐(PCL‐OH)6) were converted into Chol through a series of reaction. Both N3P3‐(PCL‐OH)6 and N3P3‐(PCL‐Chol)6 were then employed in the preparation of supramolecular inclusion complexes (ICs) with β‐cyclodextrin (β‐CD). The latter formed ICs with β‐CD in higher yield. The host–guest stoichiometry (ε‐CL:β‐CD, mol:mol) in the ICs of N3P3‐(PCL‐Chol)6 was found to be 1.2. The formation of supramolecular ICs of N3P3‐(PCL‐Chol)6 with β‐CD was confirmed by using Fourier transform infrared (FTIR) and 1H nuclear magnetic resonance (NMR) spectroscopic methods, wide‐angle X‐ray diffraction (WAXD), and thermal analysis techniques. WAXD data showed that the obtained ICs with N3P3‐(PCL‐Chol)6 had a channel‐type crystalline structure, indicating the suppression of the original crystallization of N3P3‐(PCL‐Chol)6 in β‐CD cavities. Moreover, the thermal stabilities of ICs were found to be higher than those of the free star polymer and β‐CD. Furthermore, the surface properties of N3P3‐(PCL‐Chol)6 and its ICs with β‐CD were investigated by static contact angle measurements. The obtained results proved that the wettability of N3P3‐(PCL‐Chol)6 successfully increased with the formation of its ICs with β‐CD. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 3406–3420  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号