首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Eucommia ulmoides gum (EUG) is a renewable and sustainable polymer, which could be used as rubber or plastic by altering its crosslinking density while the complicated extracting process and nonpolar molecular chains limited its application. In this effort, a novel extraction method was introduced, which could simplify the extraction process of EUG. Then, the extracted EUG‐chloroform (CHCl3) solution was directly used to prepare epoxidized EUG (EEUG) with an epoxy degree of 40.0% to improve its polarity. The epoxidized natural EUG exhibiting both polar and nonpolar motives had an advantage in working as an interfacial compatibilizer for polymer composites, especially bio‐based composites due to its inherent biocompatibility. Accordingly, the role of EEUG in modifying the interface of styrene‐butadiene rubber (SBR)/silica composites were explored. The results showed that EEUG in SBR/silica composites acted not only as a compatibilizer but also as a constructure generating better mechanical properties than other compatibilizers, such as silane couplings, Si‐69 and KH‐550, and epoxidized natural rubber (ENR). The simplified extracting process and the epoxy modification of EUG would extend its application in rubber materials, medical materials, and biopolymer materials.  相似文献   

2.
A series of superhydrophobic surfaces with micro/nanostructure have been successfully achieved by a simple process via the reaction between metal (such as Cd and Zn) salts and alkanethiolates.  相似文献   

3.
Hierarchical CuO spheres were firstly grown on the surface of cellulose film, and then stearic acid (STA) was utilized to decrease surface energy. The cupric ions fixed on the cellulose film transferred to one side and reacted with STA forming cupric stearates. The cupric stearates then self-assembled into nanobelts/nanoribbons and spread over the film, which induces to form hierarchical morphologies. Both sides of CuO modified film are black and superhydrophilic in air; after modification with STA, the film becomes superhydrophobic for both sides, whereas one side is blue and the other side is black showing different morphologies. Water contact angles (WCAs) of the superhydrophobic film for both black and blue sides are 153.9 ± 0.6° and 153.5 ± 0.8°, respectively. Sliding angles (SAs) for both sides are lower than 9.5°, indicating non-sticking superhydrophobic state. More importantly, the superhydrophobic cellulose–CuO–STA film is still superhydrophobic under hydrodynamic impact or pH of 3–11.  相似文献   

4.
The poor mechanical stability of superhydrophobic fabrics severely hindered their use in practical applications. Herein, to address this problem, we fabricated a superhydrophobic fabric with both mechanical stability and easy-repairability by a simple method. The mechanical durability of the obtained superhydrophobic fabric was evaluated by finger touching and abrasion with sandpaper. The results show that rough surface textures of the fabric were retained, and the fabric surface still exhibited superhydrophobicity after tests. More importantly, when the fabric lost its superhydrophobicity after a long-time abrasion, it can be easily rendered with superhydrophobicity once more by a regeneration process.  相似文献   

5.
A superhydrophobic coating applied in corrosion protection was successfully fabricated on the surface of aluminum alloy by chemical etching and surface modification. The water contact angle on the surface was measured to be 161.2° ± 1.7° with sliding angle smaller than 8°, and the superhydrophobic coating showed a long service life. The surface structure and composition were then characterized by means of SEM and XPS. The electrochemical measurements showed that the superhydrophobic coating significantly improved the corrosion resistance of aluminum alloy. The superhydrophobic phenomenon of the prepared surface was analyzed with Cassie theory, and it was found that only about 6% of the water surface is in contact with the metal substrate and 94% is in contact with the air cushion. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
Superhydrophobic coatings were prepared by spraying a pigment nanoparticle suspension. By changing the type of pigment nanoparticles, the colors of the coating could be controlled. The particle size of the pigments, which determines the surface structure of the coatings, played an important role in exhibiting superhydrophobicity. The spray-coating process is applicable to a variety of materials (e.g., copper, glass, paper, coiled wire, and tied thread), and the superhydrophobicity was repairable.  相似文献   

7.
The relationship between the contact angles, surface tension, and surface roughness is reviewed. Numerical formulas related to the superhydrophobic rough surfaces of polymers are predicted with two approaches, the Wenzel and Cassie–Baxter models. With these models as a guide, an artificial superhydrophobic surface is created. Rough nylon surfaces mimicking the lotus leaf are created by the coating of a polyester surface with nylon‐6,6 short fibers via the flocking process. Poly(acrylic acid) chains aregrafted onto nylon‐6,6 surfaces, and this is followed by the grafting of 1H,1H‐perfluorooctylamine onto the poly(acrylic acid) chains. Water contact angles as high as 178° are achieved. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 253–261, 2007.  相似文献   

8.
9.
Fabrication of superhydrophobic surface was achieved by electroless deposition of silver film and subsequent immersion into a mixture of stearic acid and cysteamine. The resultant superhydrophobic surface with flower and fall‐leaves like structure showed lotus leaf effect with the water contact angle of about 154° making copper surface water repellant. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
Removal of proteins from natural rubber was achieved by incubation of the rubber latex with urea in the presence of a surfactant to prevent the latex‐allergy caused with thin film products. Temperature, pH and time for the incubation were investigated to remove the proteins effectively, in which nitrogen content of the rubber was reduced to 0.02 from 0.38 wt% under the optimum condition. To remove further the proteins, deproteinization of natural rubber was made by incubation of the latex with proteolytic enzyme in the presence of a surfactant followed by incubation with urea. Amount of allergen decreased through the procedure to less than 0.7 μg/ml, which is a small amount of allergen compared to that for the commercial, deproteinized natural rubber. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

11.
The petallike structures, similar to that of a lotus leaf, were directly fabricated on the surface of aluminum sheets by a simple one‐step solution‐immersion process. It was found that the width of the nanoflakes ranges from 20 to 500 nm, and the length of the flakes is about several micrometers. The wettability of the surface with a hierarchical structure was changed from superhydrophilicity to superhydrophobicity by chemical modification with perfluorodecyltriethoxysilane (PDES). The static contact angles (CAs) for water on both of the modified surfaces were larger than 150° , which was closely related to the chemical modification and hierarchical structure. Furthermore, the surfaces retained good superhydrophobic stability in long‐term storage as well, which should be critical to the application of aluminum materials in engineering. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
Biocompatibilizer-based refined, bleached, deodorized palm stearin was successfully used as compatibilizer for natural rubber/recycled ethylene–propylene–diene rubber (NR/R-EPDM) blends. It seems effective in improving the state of cure, tensile properties, as well as the swelling resistance and morphology of the blends, indicating an improvement in compatibility between the NR matrix and R-EPDM rendered by biocompatibilizer. This was clearly verified by the dynamic mechanical properties of the blends. The dynamic responses obtained were clearly corresponding to the swelling result. It proves that the cross-link density plays a major role in the changes of storage modulus and degree of entanglement.  相似文献   

13.
Effect of the nanomatrix structure on mechanical properties of natural rubber was investigated in relation to the strain‐induced crystallization. Structure of natural rubber was analyzed through Fourier transform infrared spectroscopy, wide‐angle X‐ray diffraction measurement and transmission electron microscopy. The nanomatrix of the non‐rubber components was found to be inevitably formed in natural rubber, in which natural rubber particles linking to fatty acids were dispersed in the nanomatrix of the proteins and phospholipids. The nanomatrix disappeared after deproteinization of natural rubber with urea. Tensile strength and modulus of natural rubber were reduced by removal of the fatty acids and the proteins, which resulted in disappearance of the nanomatrix structure. The effect of fatty acids on the crystallization of natural rubber in small particles as a dispersoid was proved by tensile test of blend of natural rubber and styrene butadiene rubber. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
《中国化学快报》2023,34(11):108353
While superhydrophobic coatings have shown promise as potential anti-icing coatings, the surface roughness of these coatings is prone to damage during repeated icing-deicing cycles. Herein, two kinds of superhydrophobic anti-icing coatings are prepared from organic resin and micro-nano particles using two strategies, and their excellent anti-icing properties are also investigated. However, superhydrophobic surface I (SF1), prepared by first strategy, cannot be used for extended periods of time due to irreversible damage to the surface roughness during the icing–deicing process. Finite element simulations and experimental studies are preformed to investigate the fatal issue of such roughness damage. In contrast, the anti-icing properties of superhydrophobic surface II (SF2), prepared by second strategy, can easily regain through a simple sandpaper abrasion treatment even the surface roughness was damaged during the icing–deicing process. These exploratory results and SF2 preparation strategy provide a facile design of anti-icing coating, and the derived restorable anti-icing coating is expected to be useful for a wide application.  相似文献   

15.
16.
Epoxidised natural rubber (ENR) latex, having 25% of epoxide content, was prepared by in situ epoxidation reaction using performic acid. The ENR latex film surface was modified by immersing into methyl methacrylate (MMA) emulsion and then alkaline aqueous solution of ferrous ion/fructose for redox-initiated polymerisation. Increasing polymerisation time caused an increase in percent conversion of MMA swelled in ENR sheet. The presence of poly(methyl methacrylate) on the ENR surface was examined by attenuated total reflection-Fourier transform infrared spectroscopy. The nano-scale indentation experiment performed on the cross-section of the modified ENR sheet indicated that MMA polymerisation occurred mainly near the rubber’s surface. The surface morphology observed under scanning electron microscopy and atomic force microscopy revealed a pronounced roughness which, consequently, decreased the friction coefficient of ENR surface.  相似文献   

17.
The wetting property of a superhydrophobic glass surface with a micro-network of nanopillars fabricated from colloidal lithography and plasma etching is investigated in this paper. The micro-network distribution of nanospheres can be modulated by diluting the nanosphere concentration and controlling the spin rate. The micro-network of nanospheres spun on the glass surface serves as a mask for nanopillars during the plasma etching process. After the fabrication, the nano-structured surface is treated with fluoroalkylsilane self-assembled monolayers to obtain superhydrophobicity. Among several spin rates, the minimum colloidal network area density from a 100 nm polystyrene nanosphere solution diluted to 0.026% was found at a spin rate of 4000 rpm. The sample with the lowest network area density shows a good quality of superhydrophobicity, having the highest water contact angle and the lowest sliding angle among samples with other network area densities. In particular, samples with a micro-network of pillars also showed mechanical robustness against finger rubbing. To assess the superhydrophobic behavior in-depth, a size-dependent contact angle equation is proposed for use with a high contact angle (>135°) and with a Bo (Bond number) ? 1. Furmidge's sliding angle equation is also modified; it is derived considering a static contact angle to simplify the prediction of the sliding angle. The contact and sliding angle measurements from samples with a micro-network of nanopillars show good agreement with the proposed equations.  相似文献   

18.
The aims of this paper are three-fold. The first is to determine the reinforcement of high performance short aramid fiber in two representative rubber matrices, namely natural rubber and acrylonitrile rubber. The second is to ascertain the effect of rubber polarity on the reinforcement. The third is to establish a pattern of reinforcement for use with less studied fibers. The rubbers were reinforced either with only aramid fiber or with a hybrid of aramid fiber and carbon black. The fiber contents were varied at 0, 2, 5 and 10 parts (by weight) per hundred rubber (phr) while those of carbon black were 0, 10, 20 and 30 phr. Conventional sulfur vulcanization was used. It was found that aramid fiber can reinforce both rubbers in the low strain region effectively, although to a significantly different degree. The hybrid carbon black provides additional reinforcement at low to medium strains and allows high strain stress upturn to occur in both rubber matrices. The findings enable the preparation of rubber composites having a wide, controllable range of mechanical behavior for specific high-performance engineering applications. Significantly, they also serve as a benchmark for developing reinforced systems from alternative fibers, particularly those from natural sources.  相似文献   

19.
Nanocomposites containing natural rubber (NR) as matrix, epoxidized natural rubber (ENR) as compatibilizer and organophilic layered clay (organoclay) as filler were produced in an internal mixer and cured using a conventional sulphuric system. The effects of ENR with 25 (ENR 25) and 50 mol% epoxidation (ENR 50), respectively, were compared at 5 and 10 parts per hundred rubber (phr) concentrations. The organoclay content was fixed at 2 phr. Cure characteristics, clay dispersion, (thermo)mechanical properties of the nanocomposites were determined and discussed. Incorporation of ENR and organoclay strongly affected the parameters which could be derived from Monsanto MDR measurements. Faster cure and increased crosslink density were attributed to changes in the activation/crosslinking pathway which was, however, not studied in detail. The organoclay was mostly intercalated according to X-ray diffraction (XRD) and transmission electron microscopic (TEM) results. The best clay dispersion was achieved by adding ENR 50. This was reflected in the stiffness of the nanocomposites derived from both dynamic mechanical thermal analysis (DMTA) and tensile tests. The tensile and tear strengths of the ENR 50 containing nanocomposites were also superior to the ENR 25 compatibilized and uncompatibilized stocks.  相似文献   

20.
Facile fabrication of a superamphiphobic surface on the copper substrate   总被引:1,自引:0,他引:1  
A simple solution-immersion technique was developed for the fabrication of a superamphiphobic surface on the copper sheet. Hierarchical structure composed of nanorod arrays and microflowers was formed on the copper surface by an alkali assistant oxidation process; after fluorination, the surface became super-repellent toward water and several organic liquids possessing much lower surface tension than that of water, such as hexadecane. Such superamphiphobicity is attributed to the synergistic effect of their special surface chemicals and microscopic structures, which allows for the formation of a composite interface with all probing liquids tested. We also discuss the effects of surface chemical constituent and geometrical structure on hydrophobicity and oleophobicity; such information allows us to engineer surfaces with specific oleophobic behavior. Additionally, the stability of the composite interface on the created superamphiphobic surface is studied by the compression and immersion test.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号