首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Azobenzene E<==>Z photoisomerization, following excitation to the bright S(pi pi*) state, is investigated by means of ab initio CASSCF optimizations and perturbative CASPT2 corrections. Specifically, by elucidating the S(pi pi*) deactivation paths, we explain the mechanism responsible for azobenzene photoisomerization, the lower isomerization quantum yields observed for the S(pi pi*) excitation than for the S1(n pi*) excitation in the isolated molecule, and the recovery of the Kasha rule observed in sterically hindered azobenzenes. We find that a doubly excited state is a photoreaction intermediate that plays a very important role in the decay of the bright S(pi pi*). We show that this doubly excited state, which is immediately populated by molecules excited to S(pi pi*), drives the photoisomerization along the torsion path and also induces a fast internal conversion to the S1(n pi*) at a variety of geometries, thus shaping (all the most important features of) the S(pi pi*) decay pathway and photoreactivity. We reach this conclusion by determining the critical structures, the minimum energy paths originating on the bright S(pi pi*) state and on other relevant excited states including S1(n pi*), and by characterizing the conical intersection seams that are important in deciding the photochemical outcome. The model is consistent with the most recent time-resolved spectroscopic and photochemical data.  相似文献   

2.
报导了α,ω-偶氮苯,紫精双发色团化合物的合成与性质研究,结果表明偶氮苯的光致顺反异构化以可调控与之相连的紫精与曙红络合行为,其作用程度的强弱与连接两者的亚甲基链的长度有关,借助HNMR通过对构象进行分析解释了上述的研究结果。  相似文献   

3.
Mechanism of phototriggered isomerization of azobenzene and its derivatives is of broad interest. In this paper, the S(0) and S(1) potential energy surfaces of the ethylene-bridged azobenzene (1) that was recently reported to have highly efficient photoisomerization were determined by ab initio electronic structure calculations at different levels and further investigated by a semiclassical dynamics simulation. Unlike azobenzene, the cis isomer of 1 was found to be more stable than the trans isomer, consistent with the experimental observation. The thermal isomerization between cis and trans isomers proceeds via an inversion mechanism with a high barrier. Interestingly, only one minimum-energy conical intersection was determined between the S(0) and S(1) states (CI) for both cis → trans and trans → cis photoisomerization processes and confirmed to act as the S(1) → S(0) decay funnel. The S(1) state lifetime is ~30 fs for the trans isomer, while that for the cis isomer is much longer, due to a redistribution of the initial excitation energies. The S(1) relaxation dynamics investigated here provides a good account for the higher efficiency observed experimentally for the trans → cis photoisomerization than the reverse process. Once the system decays to the S(0) state via CI, formation of the trans product occurs as the downhill motion on the S(0) surface, while formation of the cis isomer needs to overcome small barriers on the pathways of the azo-moiety isomerization and rotation of the phenyl ring. These features support the larger experimental quantum yield for the cis → trans photoisomerization than the trans → cis process.  相似文献   

4.
Photoisomerization and thermal isomerization behaviors of an extensive series of arylazoimidazoles are investigated. Absorption spectra are characterized by a structured pipi* absorption band around 330-400 nm with a tail on the lower energy side extending to 500 nm corresponding to an npi* transition. The trans-to-cis photoisomerization occurs on excitation into these absorption bands. The quantum yields are dependent on the excitation wavelength, as observed for azobenzene derivatives, but are generally larger than those of azobenzene. The thermal cis-to-trans isomerization rates are also generally larger than that of azobenzene and are comparable to those of 4-N,N-dimethylaminoazobenzene and 4-nitroazobenzene. Arylazoimidazoles with no substituent on the imidazole nitrogen are unique in that the quantum yield for the trans-to-cis photoisomerization and the rate of thermal cis-to-trans isomerization are particularly large. It is proposed that the fast thermal isomerization is due to an involvement of self-catalyzed and protic molecule-assisted tautomerization to a hydrazone form.  相似文献   

5.
The photoisomerization of the push-pull substituted azo dye Disperse Red 1 is studied using femtosecond time-resolved absorption spectroscopy and other spectroscopic and computational techniques. In comparison with azobenzene, the pipi* state is more stabilized by the effects of push-pull substitution than the npi* state, but the latter is probably still the lowest in energy. This conclusion is based on the kinetics, anisotropy of the excited state absorption spectrum, the spectra of the ground states, and quantum chemical calculations. The S(1)(npi*) state is formed from the initially excited pipi* state in <0.2 ps, and decays to the ground state with time constants of 0.9 ps in toluene, 0.5 ps in acetonitrile, and 1.4 ps in ethylene glycol. Thermal isomerization transforms the Z isomer produced to the more stable E isomer with time constants of 29 s (toluene), 28 ms (acetonitrile), and 2.7 ms (ethylene glycol). The pathway of photoisomerization is likely to be rotation about the N=N bond. Quantum chemical calculations indicate that along the inversion pathway ground and excited state energy surfaces remain well separated, whereas rotation leads to a region where conical intersections can occur. For the ground-state Z to E isomerization, conclusive evidence is lacking, but inversion is more probably the favored pathway in the push-pull substituted systems than in the parent azobenzene.  相似文献   

6.
The synthesis and photochemical study of a family of molecular switches inspired by the green fluorescent protein (GFP) chromophore is presented. These compounds can be easily synthesized, and their photophysical properties may be tuned. Due to their efficient photoisomerization and high stability, these compounds can be switched on/off by using light and heat or light with different wavelengths.  相似文献   

7.
The photoresponsive azobenzene‐tethered DNAs have received growing experimental attention because of their potential applications in biotechnology and nanotechnology; however, little is known about the initial photoisomerization of azobenzene in these systems. Herein we have employed quantum mechanics/molecular mechanics (QM/MM) methods to explore the photoisomerization dynamics of an azobenzene‐tethered DNA duplex. We find that in the S1 state the trans–cis photoisomerization path is much steeper in DNA than in vacuo, which makes the photoisomerization much faster in the DNA environment. This acceleration is primarily caused by complex steric interactions between azobenzene and the nearby unpaired thymine nucleobase, which also change the photoisomerization mechanism of azobenzene in the DNA duplex.  相似文献   

8.
Photochemical and photophysical measurements were conducted on peripheral and non-peripheral tetrakis- and octakis(4-benzyloxyphenoxy)-substituted zinc phthalocyanines (1, 2 and 3). General trends are described for photodegradation, and fluorescence quantum yields, triplet lifetimes and triplet quantum yields as well as singlet oxygen quantum yields of these compounds in dimethylsulphoxide (DMSO) and toluene. The fluorescence of the complexes is quenched by benzoquinone (BQ), and fluorescence quenching properties are investigated in DMSO and toluene. The effects of the solvents on the photophysical and photochemical parameters of the zinc(II) phthalocyanines (1, 2 and 3) are also reported. Photophysical and photochemical properties of phthalocyanine complexes are very useful for PDT applications.  相似文献   

9.
The fluorescence, phosphorescence, and photochemical properties of di- and triaryl-substituted-1,2,3-triazoles are reported in this work. The ease of synthesis of regioisomers of substituted triazoles enables a systematic study on the correlation between regiochemistry and excited state properties, which include the solvent dependence of fluorescence, energy gap between singlet and triplet emitters, and propensity to photon-triggered transformations. The triazoles that carry electron (e)-donor and e-acceptor aryl substituents show high fluorescence quantum yields in weakly polar solvents and exhibit solvent-dependent fluorescence. The luminescence properties of these compounds in glass matrices at 77 K are characterized. The thermal and photo-stability, two parameters that are crucial to their potential utilities in optical devices, of these compounds are determined. The position of the e-donor substituent has a significant impact on the fluorescence emission energy and solvent sensitivity, singlet-triplet energy gap, and photochemical reactivity and stability. The experimental observations on the structural correlation with the photophysical and photochemical properties are explained by quantum chemical calculations. This study provides a rationale on the placement of substituent on a donor-acceptor type fluorophore to maneuver a range of photo-related properties.  相似文献   

10.
The synthesis, photophysical and photochemical properties of the tetra- and octa-poly(oxyethylene)substituted zinc (II) phthalocyanines are reported for the first time. The new compounds have been characterized by elemental analysis, IR, 1H and 13C NMR spectroscopy, electronic spectroscopy and mass spectra. General trends are described for photodegradation, singlet oxygen, triplet state and fluorescence quantum yields, and triplet and fluorescence lifetimes of these compounds in dimethylsulfoxide (DMSO). Photophysical and photochemical properties of phthalocyanine complexes are very useful for PDT applications. The effects of the substituents on the photophysical and photochemical parameters of the zinc(II) phthalocyanines (3a, 5a and 6a) are also reported. The singlet oxygen quantum yields (Phi(Delta)), which give an indication of the potential of the complexes as photosensitizers in applications where singlet oxygen is required (Type II mechanism) ranged from 0.60 to 0.72. Thus, these complexes show potential as Type II photosensitizers. The fluorescence of the complexes was quenched by benzoquinone (BQ).  相似文献   

11.
New fluorescent azobenzene dyes and side-chain polymers have been synthesized and characterized and their photophysical properties studied. A series of azobenzene dyes having different fluorophores such as phenol (S1), phenylphenol (S2) and naphthol (S3) incorporated in them were synthesized. S2 had unusually high fluorescence with a quantum yield of phi f = 0.2 recorded in dichloromethane (DCM), whereas S1 and S3 were found to be weakly fluorescent. The azobenzene dyes were converted into methacrylate monomers having short ethyleneoxy spacers and then free radically polymerized. Phenylphenol-based azobenzene polymer (P2) continued to show fluorescence, whereas fluorescence was completely quenched in the case of phenol (P1)- and naphthol (P3)-based polymers. Phenylphenol, though twisted in the ground state is known to have a more planar geometry in the excited state--a factor that enables it to retain its fluorescence behavior even when it is incorporated as part of an azobenzene unit. In contrast, naphthol, which is a better fluorophore compared to phenylphenol, loses much of its emissive behavior upon coupling to the azobenzene unit. The extent of trans to cis photoisomerization in solution was very low (approximately 17%) for P2 after 30 min of continuous irradiation using 365 nm light, in contrast to approximately 40% for P1 under identical conditions. This is attributed to the steric repulsion brought about by the bulky phenylphenol units that restrict rotation. A 2-fold enhancement in fluorescence emission was observed for P2 upon irradiation by UV light at 360 nm, which relaxed to the original intensity in about 7 day's time. The higher emission of the cis azobenzenes is generally attributed to an inhibition of photoinduced electron transfer (PET) mechanism. The emission of P2 showed a concentration dependence which increased initially and then decreased in intensity with the formation of a new red-shifted peak at higher concentration due to aggregation. Irradiation of the fluorescence quenched highly concentrated (1 x 10(-3) M) sample of P2 showed an enhancement in emission from aggregates at 532 nm.  相似文献   

12.
An ab initio theoretical study at the CASPT2 level is reported on minimum energy reaction paths, state minima, transition states, reaction barriers, and conical intersections on the potential energy hypersurfaces of two tautomers of adenine: 9H- and 7H-adenine. The obtained results led to a complete interpretation of the photophysics of adenine and derivatives, both under jet-cooled conditions and in solution, within a three-state model. The ultrafast subpicosecond fluorescence decay measured in adenine is attributed to the low-lying conical intersection (gs/pipi* La)(CI), reached from the initially populated 1(pipi* La) state along a path which is found to be barrierless only in 9H-adenine, while for the 7H tautomer the presence of an intermediate plateau corresponding to an NH2-twisted conformation may explain the absence of ultrafast decay in 7-substituted compounds. A secondary picosecond decay is assigned to a path involving switches towards two other states, 1(pipi* Lb) and 1(npi*), ultimately leading to another conical intersection with the ground state, (gs/npi*), with a perpendicular disposition of the amino group. The topology of the hypersurfaces and the state properties explain the absence of secondary decay in 9-substituted adenines in water in terms of the higher position of the 1(npi*) state and also that the 1(pipi* Lb) state of 7H-adenine is responsible for the observed fluorescence in water. A detailed discussion comparing recent experimental and theoretical findings is given. As for other nucleobases, the predominant role of a pipi*-type state in the ultrafast deactivation of adenine is confirmed.  相似文献   

13.
The photochemical and photophysical properties of peripheral and nonperipheral zinc and indium phthalocyanines containing 7‐oxy‐3,4‐dimethylcoumarin synthesized were investigated in this study. 7‐Hydroxy‐3,4‐dimethylcoumarin ( 1 ) was synthesized via Pechmann condensation reaction and then the phthalonitrile derivatives [4‐(7‐oxy‐3,4‐dimethylcoumarino)phthalonitrile ( 2 ) and 3‐(7‐oxy‐3,4‐dimethylcoumarino)phthalonitrile ( 3 )] were synthesized by nucleophilic aromatic substitution. Phthalocyanine compounds containing coumarin units on peripheral ( 4 and 5 ) and nonperipheral ( 6 and 7 ) positions were prepared via cyclotetramerization of phthalonitrile compounds. All compounds' characterizations were performed by spectroscopic methods and elemental analysis. The phthalocyanine derivatives' ( 4–7 ) photochemical and photophysical properties were studied in DMF. The photophysical (fluorescence quantum yields and lifetimes) and photochemical (singlet oxygen and photodegradation quantum yields) properties of these novel phthalocyanines ( 4 – 7 ) were studied in DMF. They produced good singlet oxygen (e.g., ΦΔ = 0.93 for 7 ) and showed appropriate photodegradation (in the order of 10?5), which is very important for photodynamic therapy applications.  相似文献   

14.
A series of azobenzene-functionalized poly(alkyl aryl ether) dendrimers have been synthesized and their photochemical and photophysical properties in solution and as thin films have been investigated. Although the photochemical behavior of the azodendrimers in solution indicated that the azobenzene units behave independently, very similar to the constituent monomer azobenzene unit, the properties of thin solid films of the dendrimers were distinctly different. The azodendrimers, AzoG1, AzoG2, and AzoG3 were observed to form stable supercooled glasses, which showed long-wavelength absorption and red emission characteristics of J-aggregates of the azobenzene chromophores. Reversible photoinduced isomerization of the azodendrimers in the glassy state is described.  相似文献   

15.
The synthesis, photophysical and photochemical properties of the 4-({3,4,5-tris-[2-(2-ethoxyethoxy)ethyloxy]benzyl}oxy) and 4-({3,4,5-tris-[2-(2-ethoxyethoxy)ethyloxy]benzyl}thio) zinc(ii) phthalocyanines are reported for the first time. The new compounds have been characterized by elemental analysis, IR, (1)H and (13)C NMR spectroscopy, electronic spectroscopy and mass spectra. General trends are described for photodegradation, singlet oxygen, fluorescence and triplet excited state quantum yields, and triplet state and fluorescence lifetimes of these compounds in dimethylsulfoxide (DMSO). The fluorescence of the complexes was quenched by benzoquinone (BQ). The effects of the substitution on the photophysical and photochemical parameters of the zinc(II) phthalocyanines (6, 7 and 8) are also reported. Photophysical and photochemical properties of phthalocyanine complexes are very useful for PDT applications. The substituted Zn(II) phthalocyanines showed high triplet and singlet oxygen quantum yields. High singlet oxygen quantum yields are very important for Type II mechanism. Thus, these complexes show potential as Type II photosensitizers.  相似文献   

16.
A series of bis(arylidene)cycloalkanone compounds based on cyclobutanone, cyclopentanone, cyclohexanone and cycloheptanone, C4-C7, respectively, with a D-π-A-π-D structure containing the same donor and acceptor but different alicyclic rings was prepared. The effects of alicyclic ring size on the photophysical, photochemical and electrochemical properties of these compounds were investigated systematically. We found that an increase of the number of carbons in the central alicyclic ring leads to changes in geometry, which has significant effects on the conjugation, and photophysical and photochemical properties. These effects include decreases in the fluorescence quantum yield, transient lifetimes, peak extinction coefficients, and the singlet oxygen quantum yield with the increase of the ring size. The one-photon absorption spectra, the two-photon absorption (2PA) spectra, and the fluorescence spectra all show a hypsochromic shift with increasing ring size. The results of this study provide guidance for the design of new cycloketone-based D-π-A-π-D 2PA compounds for photopolymerization and photodynamic therapy applications.  相似文献   

17.
Abstract— Some photophysical and photochemical properties of two furocoumarins, three furochro-menes and one difurobenzene have been studied in ethanol by laser flash spectroscopy. Such properties included the triplet absorption spectra. extinction coefficients, quantum yields of formation and reactivities with the nucleic acid bases thymine and uracil, and the amino acid tryptophan. The effects the same compounds have on survival of the yeast, Saccharomyces cerevisiae , after 365 nm photosensitization were also investigated. These effects on survival differed markedly for the different compounds. Possible correlations between the photophysical, photochemical and photobiological data are discussed.  相似文献   

18.
Patrocínio AO  Iha NY 《Inorganic chemistry》2008,47(23):10851-10857
The fac-[Re(CO)3(Me4phen)(trans-L)]+ complexes, Me4phen = 3,4,7,8-tetramethyl-1,10-phenanthroline and L = 4-styrylpyridine, stpy, or 1,2-bis(4-pyridyl)ethylene, bpe, were synthesized and characterized by their spectroscopic,photochemical, and photophysical properties. The complexes exhibit trans-to-cis isomerization upon 313, 334, 365,and 404 nm irradiation, and the true quantum yields can be efficiently determined by absorption changes combined with 1H NMR data. For fac-[Re(CO)3(Me4phen)(trans-bpe)]+ similar quantum yields were determined at all wavelengths investigated. However, a lower value (phitrue = 0.35) was determined for fac-[Re(CO)3(Me4phen)(trans-stpy)]+ at404 nm irradiation, which indicates different pathways for the photoisomerization process. The photoproducts, fac-[Re(CO)3(Me4phen)(cis-L)]+, exhibit luminescence at room temperature with two maxima ascribed to the 3ILMe4phen and 3MLCTRe-->Me4phen excited states. The luminescence properties were investigated in different media, and the behavior in glassy EPA at 77 K showed that the contribution of each emissive state is dependent on the excitation wavelength. The photochemical and photophysical behavior of the complexes were rationalized in terms of the energy gap of excited states and can be exploited in photoswitchable luminescent rigidity sensors.  相似文献   

19.
A series of chiral azobenzene compounds with branched terminal were synthesised, and the photosensitive performances were investigated accordingly. It was found that the photochemical properties were mainly affected by the trans–cis configuration of azobenzene and the linked position between the azobenzene and chiral centre. The para-type azobenzenes showed general photochemical decrease in helical twisting power (HTP), but the meta-type ones appeared interestingly showed photochemical increase in HTP. This work provided an effective method for designing molecules to control blue phase (BP) including adjusting colours, inducing BP and extending BP range, which was promising in the applications of optically addressable devices.  相似文献   

20.
In this work, we investigate general mechanistic principles that control reaction selectivity following S(1)/S(0) internal conversion in benzene. A systematic relationship is drawn between the varying topology of an extended seam of conical intersection and the balance between two competitive radiationless decay channels: photophysical (benzene reactant regeneration) and photochemical (prefulvene product formation). This is supported by a model quantum dynamics study, using a direct dynamics approach based on variational multiconfiguration Gaussian wavepackets, where initial excitation of specific vibrational modes is designed to generate dynamical pathways that reach selected targets regions of the seam. High-energy regions of the seam are found to be sloped and in favor of the photophysical channel, while lower-energy regions are peaked and give access to the photochemical channel. This changeover could in principle be exploited to define targets for optimal control, by exciting different combinations of specific vibronic levels in S(1), accessing different regions of the seam, and giving different products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号