首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
TiO2(B) nanowires and TiO2 anatase nanowires were synthesized by the hydrothermal processing in 10 M NaOH aq. at 150 °C followed by the post-heat treatment at 300-800 °C. As-synthesized Na-free titanate nanowires (prepared by the hydrothermal treatment and repeated ion exchanging by HCl (aq.) were transformed into TiO2(B) structure with maintaining 1-D morphology at 300-500 °C, and further transformed into anatase structure at 600-800 °C with keeping 1-D shape. At 900 °C, they transformed into rod-shaped rutile grains. Microstructure of these 1-D TiO2 nanomaterials is reported.  相似文献   

2.
The nanosized titania and TiO2/SiO2 particles were prepared by the microwave-hydrothermal method. The effect of physical properties TTIP/TEOS ratio and calcination temperature has been investigated. The major phase of the pure TiO2 particle is of the anatase structure, and a rutile peak was observed above 800°C. In TiO2/SiO2 particles, however, no significant rutile phase was observed, although the calcination temperature was 900°C. No peaks for the silica crystal phase were observed at either silica/titania ratio. The crystallite size of TiO2/SiO2 particles decreases as compared to pure TiO2 at high calcination temperatures. The TiO2/SiO2 particles show higher activity on the photocatalytic decomposition of orange II as compared to pure TiO2 particles.  相似文献   

3.
Titanate nanofibers were synthesized by hydrothermal method (150 °C for 72 h) using natural rutile sand as the starting materials. TiO2 (B) and anatase TiO2 (high crystallinity) nanofibers with the diameters of 20-100 nm and the lengths of 10-100 μm were obtained by calcined titanate nanofibers for 4 h at 400 and 700 °C (in air), respectively. The samples characterized by XRD, SEM, TEM, SAED, HRTEM, and BET surface area. This synthesis method provides a simple route to fabricate one-dimensional nanostructured TiO2 from low cost material.  相似文献   

4.
Uniform rhodamine B (RB)-doped SiO2/TiO2 composite microspheres with catalytic and fluorescent properties were prepared by an easy and economical method in this paper. The composite microspheres were built up with well-dispersed silica particles as the cores, RB as both the doped agent and stabilizer, and the TiO2 shells were obtained through the hydrolysis of TiCl4 in water bath. The morphology and structure of the particles were characterized by scanning electron microscopy (SEM) and X-ray powder diffraction (XRD). The characterization results indicate that composite particles are all in spherical shape and have a narrow size distribution. The composite particles calcined above 500 °C reveal clear crystalline reflection peaks of the rutile TiO2 which exhibits well catalytic property. The photocatalytic experiment was carried out in order to examine the catalytic property of composite microspheres. The fluorescent property of particles was also investigated. Dye-leakage test indicates that RB molecules entrapped in the composite particles by this method are stable inside the particles.  相似文献   

5.
Optically active polyurethane/titania/silica (LPU/TiO2/SiO2) multilayered core–shell composite microspheres were prepared by the combination of titania deposition on the surface of silica spheres and subsequent polymer grafting. LPU/TiO2/SiO2 was characterized by FT-IR, UV–vis spectroscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), SEM and TEM, and the infrared emissivity value (8–14 μm) was investigated in addition. The results indicated that titania and polyurethane had been successfully coated onto the surfaces of silica microspheres. LPU/TiO2/SiO2 exhibited clearly multilayered core–shell construction. The infrared emissivity values reduced along with the increase of covering layers thus proved that the interfacial interactions had direct influence on the infrared emissivity. Besides, LPU/TiO2/SiO2 multilayered microspheres based on the optically active polyurethane took advantages of the orderly secondary structure and strengthened interfacial synergistic actions. Consequently, it possessed the lowest infrared emissivity value.  相似文献   

6.
Mesoporous TiO2-CeO2 nanopowders responding to visible wavelength were synthesized by using a surfactant assisted sol-gel technique. They were obtained using metal alkoxide precursors modified with acetylacetone (ACA) and laurylamine hydrochloride (LAHC) as surfactant. The samples were characterized by XRD, nitrogen adsorption isotherm, SEM, TEM, and selected area electron diffraction (SAED), respectively. The 95 mol% TiO2-5 mol% CeO2 system yielded single anatase phase, however, further addition of the CeO2 formed cubic CeO2 structure while anatase TiO2 decreased. Additions of 5 and 10 mol% CeO2 increased the surface area, but those of 25, 50, and 75 mol% CeO2 did not affect it very much. By using this mixed metal oxides system, TiO2 can be modified to respond to the visible wavelength. The mixed metal oxides had catalytic activity (evaluating the formation rate of I3) about 2-3 times higher than pure CeO2, while nanosize anatase type TiO2 materials had no catalytic activity under visible light. The catalytic activity was almost proportional to the specific surface area. The formation rate of I3 was much improved by changing the calcination temperature and calcination period. Highest catalytic activity in this study was obtained for the 50 mol% TiO2-50 mol% CeO2 nanopowders calcined at 250 °C for 24 h.  相似文献   

7.
王程  施惠生  李艳  郭晓潞 《无机化学学报》2011,27(11):2239-2244
采用静电自组装方法制备了纳米TiO2/SiO2光催化材料。采用巯丙基三甲氧基硅烷偶联剂对SiO2进行干法改性,采用双氧水/冰醋酸将偶联剂巯基基团氧化为磺酸基基团。在正负电荷的吸引下,带负电荷的SiO2与带正电荷的钛聚合阳离子自发地组装在一起,经一定温度热处理得到纳米TiO2/SiO2光催化材料。采用XRD、FTIR、PL、UV-Vis DRS、SEM和ICP等对材料进行了分析和表征。采用甲基橙溶液评价材料的光催化性能。结果表明:SiO2促使锐钛矿的形成,抑制锐钛矿向金红石的转变,减小TiO2的晶粒尺寸,使得TiO2光吸收波长发生蓝移。TiO2与SiO2通过Si-O-Ti键发生结合。采用静电自组装方法制备的材料中TiO2的含量高于传统方法,导致材料的光催化性能有所提高。  相似文献   

8.
Sol-gel TiO2-CeO2 materials were synthesized at pH=3 employing HNO3 as hydrolysis agent. Gels were thermally treated at 473, 673, 873, and 1073 K, respectively. Morphologies of the final substrates were studied via N2 sorption, XRD and TEM. N2 isotherms indicated a steady porosity in TiO2-CeO2 samples treated up to 873 K. Adsorption-desorption isotherms and TEM micrographs were used to perform fractal analyses of annealed samples. A dominant anatase phase was detected by XRD between 473 and 873 K while a rutile phase was evident at 1073 K. The presence of cerium conferred an increased thermal stability to the TiO2 materials against particle sintering and pore collapse. The structure of cerium-doped anatase lattice was visualized through crystal simulation to investigate the possible substitution of Ti4+ by Ce+4 ions. This effect and the progressive segregation of CeO2 crystals with temperature on the surface of TiO2 grains lead to substrates of assorted morphologies.  相似文献   

9.
In this study, mesoporous TiO2 microspheres were synthesized by simple hydrothermal reaction, and successfully developed for phosphopeptides enrichment from both standard protein digestion and real biological sample such as rat brain tissue extract. The mesoporous TiO2 microspheres (the diameter size of about 1.0 μm) obtained by simple hydrothermal method were found to have a specific surface area of 84.98 m2/g, which is much larger than smooth TiO2 microspheres with same size. The surface area of mesoporous TiO2 microspheres is almost two times of commercial TiO2 nanoparticle (a diameter of 90 nm). Using standard proteins digestion and real biological samples, the superior selectivity and capacity of mesoporous TiO2 microspheres for the enrichment of phosphorylated peptides than that of commercial TiO2 nanoparticles and TiO2 microspheres was also observed. It has been demonstrated that mesoporous TiO2 microspheres have powerful potential for selective enrichment of phosphorylated peptides. Moreover, the preparation of the mesoporous TiO2 microspheres obtained by the hydrothermal reaction is easy, simple and low-cost. These mesoporous TiO2 microspheres with the ability of large scale synthesis can widely be applied for phosphorylated proteomic research.  相似文献   

10.
Defect microstructure of Zr-dissolved TiO2 polycrystals, homogenized as rutile structure at 1600 °C and then aged at 900 °C for 2-200 h in air, was characterized by analytical electron microscopy. Diffuse diffractions occurred at 1/2(211) as a result of Zr4+ substitution for Ti4+ with volume/charge compensating defect clusters. Upon annealing at 900 °C, plate-like Guinier and Preston (G.P.) zone appeared with the plate surface parallel to (100) and (010) and in association with dislocations. Commensurate superstructures with apparent triple {101} and {111} periodicity also occurred as metastable intermediates, which are presumably the precursor of the equilibrium ZrTi2O6 precipitate.  相似文献   

11.
A comparative study on Au/TiO2catalysts prepared by impregnation with HAuCl4of commercial TiO2 or by impregnation of sol-gel derived TiO2has been carried out during CO oxidation. Specific surface areas and mean Au particle of 49 and 74 m2/g and 35 and 25 Å were obtained for impregnated commercial TiO2 and sol-gel preparations, respectively. XRD patterns shown that in sol-gel derived TiO2 only anatase phase was identified, while in commercial TiO2 anatase and rutile phases co-exist. Titania support effect on Au activity for the oxidation of CO has been observed. The light-off during the reaction on Au/TiO2initiates at 50°C, whereas for commercial impregnated TiO2 catalyst the light-off initiates at 200°C.  相似文献   

12.
TiO2-SiO2 composites, with high specific surface area (up to 308 m2/g), large pore volume, and narrow distribution with average pore sizes of 3.2 nm, have been synthesized from wollastonite and titanium sulfate in the absence of any surfactants. Calcium sulfate, a microsolubility salt, plays an important role in the formation of pores in this porous TiO2/silica composite. The microstructure and chemical composition of composite were characterized by X-ray diffractometry (XRD), transmission electron microscopy (TEM) equipped with energy-dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectrometer (XPS) and N2 adsorption and desorption analysis. The as-prepared porous titanium dioxide-silicon dioxide composites with high specific surface area and well-crystallized anatase contents were used as an efficient photocatalyst.  相似文献   

13.
A solution based wet chemistry approach has been developed for synthesizing Li2SiO3 using LiNO3 and mesoporous silica as starting materials at 550 °C. A reaction path where NO and O2 are formed as side-products is proposed. The crystals synthesized exhibit dendritic growth where the as-prepared nanodendrite is a typical 1-fold nanodendrite composed of one several microns long and some tenth of nanometers wide trunk with small branches, which are several hundreds of nanometers long and up to 70 nm in diameter. The effect of the structure of the mesoporous silica for the final morphology is discussed.  相似文献   

14.
ZnO/TiO2/SnO2 mixture was prepared by mixing its component solid oxides ZnO, TiO2 and SnO2 in the molar ratio of 4?1?1, followed by calcining the solid mixture at 200-1300 °C. The products and solid-state reaction process during the calcinations were characterized with powder X-ray diffraction (XRD), thermogravimetric and differential thermal analysis (TG-DTA), UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS) and Brunauer-Emmett-Teller measurement of specific surface area. Neither solid-state reaction nor change of crystal phase composition took place among the ZnO, TiO2 and SnO2 powders on the calcinations up to 600 °C. However, formation of the inverse spinel Zn2TiO4 and Zn2SnO4 was detected at 700-900 and 1100-1200 °C, respectively. Further increase of the calcination temperature enabled the mixture to form a single-phase solid solution Zn2Ti0.5Sn0.5O4 with an inverse spinel structure in the space group of . The ZnO/TiO2/SnO2 mixture was photocatalytically active for the degradation of methyl orange in water; its photocatalytic mass activity was 16.4 times that of SnO2, 2.0 times that of TiO2, and 0.92 times that of ZnO after calcination at 500 °C for 2 h. But, the mass activity of the mixture decreased with increasing the calcination temperature at above 700 °C because of the formation of the photoinactive Zn2TiO4, Zn2SnO4 and Zn2Ti0.5Sn0.5O4. The sample became completely inert for the photocatalysis after prolonged calcination at 1300 °C (42 h), since all of the active component oxides were reacted to form the solid solution Zn2Ti0.5Sn0.5O4 with no photocatalytic activity.  相似文献   

15.
The kinetics describing the thermal decomposition of Li4SiO4 and Li2SiO3 have been analysed. While Li4SiO4 decomposed on Li2SiO3 by lithium sublimation, Li2SiO3 was highly stable at the temperatures studied. Li4SiO4 began to decompose between 900 and 1000 °C. However, at 1100 °C or higher temperatures, Li4SiO4 melted, and the kinetic data of its decomposition varied. The activation energy of both processes was estimated according to the Arrhenius kinetic theory. The energy values obtained were −408 and −250 kJ mol−1 for the solid and liquid phases, respectively. At the same time, the Li4SiO4 decomposition process was described mathematically as a function of a diffusion-controlled reaction into a spherical system. The activation energy for this process was estimated to be −331 kJ mol−1. On the other hand, Li2SiO3 was not decomposed at high temperatures, but it presented a very high preferential orientation after the heat treatments.  相似文献   

16.
Mesoporous F-doped TiO2 powders were prepared by hydrolysis of titanium tetraisopropoxide (TTIP) in a mixed NH4F-H2O solution. Effects of F ion content and calcination temperatures on the phase composition and porosity of mesoporous titania were investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and BET surface areas. The results showed the BET surface area (SBET) of the pure and doped powders dried at 100°C ranged from 260 to 310 m2/g as determined by nitrogen adsorption. With increasing calcination temperatures, the SBET values of the calcined titania powders decreased due to the increase in crystalline size. The pore size distribution was bimodal with fine intra-particle pore and larger inter-particle pore as determined by nitrogen adsorption isotherms. The peak pore diameter of intra-particle pore increases with increasing F ion content. At 700°C, all the titania powders exhibit monomodal pore size distributions due to the complete collapse of the intra-particle pores. The crystallization of anatase was obviously enhanced due to F-doping at 400°C and 500°C. Moreover, with increasing F ion concent, F ions not only suppressed the formation of brookite phase at low temperature, but also prevented phase transition of anatase to rutile at high temperature.  相似文献   

17.
半导体多相光催化法作为一种污染治理新技术越来越受到人们的重视,在所使用的半导体光催化剂中,TiO2以无毒,催化活性高,价廉,无污染等特点,成为最具有前途的绿色环保型催化剂之一[1],但其自身具有局限性,如禁带宽度大,需在近紫外光下才能激发产生电子空穴对,对太阳光的利用率仅  相似文献   

18.
Using composite surfactant templates, polyoxyethylene (20) oleyl ether (Brij98) and cetyl trimethyl ammonium bromide (CTAB), as structure-directing agents, N and La co-doped mesoporous TiO2 complex photocatalysts were synthesized successfully. The micromorphology of co-doped mesoporous TiO2 samples was characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transformed infrared spectroscopy (FT-IR), energy-dispersive X-ray spectrometer (EDS) and N2 adsorption-desorption measurements. The results indicated that the complex photocatalyst prepared with a molar ratio of Brij98:CTAB=1:1 showed a uniform pore size of ca. 7 nm and a high specific surface area (SBET) of 279.0 m2 g−1, and exhibited the highest photocatalytic activity for degradation of papermaking wastewater under ultra-violet light irradiation. The chemical oxygen demand (CODcr) percent degradation was about 73% in 12 h and chroma percent degradation was 100% in 8 h.  相似文献   

19.
The enrichment of low abundance phosphopeptides before MS analysis is a critical step for in-depth phosphoproteome research. In this study, mesoporous titanium dioxide (TiO2) aerogel was prepared by precipitation and supercritical drying. The specific surface area up to 490.7 m2 g−1 is achieved by TiO2 aerogel, much higher than those obtained by commercial TiO2 nanoparticles and by the latest reported mesoporous TiO2 spheres. Due to the large specific surface area and the mesoporous structure of the aerogel, the binding capacity for phosphopeptides is six times higher than that of conventional TiO2 microparticles (173 vs 28 μmol g−1). Because of the good compatibility of enrichment procedure with MALDI-TOF-MS and the large binding capacity of TiO2 aerogel, a detection limit as low as 30 amol for analyzing phosphopeptides in β-casein digest was achieved. TiO2 aerogel was further applied to enrich phosphopeptides from rat liver mitochondria, and 266 unique phosphopeptides with 340 phosphorylation sites, corresponding to 216 phosphoprotein groups, were identified by triplicate nanoRPLC-ESI-MS/MS runs, with false-positive rate less than 1% at the peptide level. These results demonstrate that TiO2 aerogel is a kind of promising material for sample pretreatment in the large-scale phosphoproteome study.  相似文献   

20.
This article describes the preparation of mesoporous rod-like F-N-codoped TiO2 powder photocatalysts with anatase phase via a sol-gel route at the temperature of 373 K, using cetyltrimethyl ammonium bromide (CTAB) as surfactant. The as-prepared photocatalysts were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and UV-visible diffuse reflectance spectra (UV-vis DRS). The results showed that the photocatalysts possessed a homogeneous pore diameter and a high surface area of 106.3-160.7 m3 g−1. The increasing CTAB reactive concentration extended the visible-light absorption up to 600 nm. The F-N-codoped TiO2 powders exhibited significant higher adsorption capacity for methyl orange (MO) than that of Degussa P25 and showed more than 6 times higher visible-light-induced catalytic degradation for MO than that of P25.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号