首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
WO3-ZrO2 samples were obtained by precipitating zirconium oxynitrate in presence of WO4 species in solution from ammonium metatungstate at pH=10.0. Samples were characterized by atomic absorption spectroscopy, thermal analysis, X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, high-resolution transmission electron microscopy and energy filtered-TEM. The ammonia retained in the dried sample produced a reductive atmosphere to generate W5+ ions coexisting with W6+ ions to produce a solid solution of tungsten in the zirconia lattice to stabilize the zirconia tetragonal phase when the sample was annealed at 560 °C. When the sample was annealed at 800 °C, the W atoms near crystallite surface were oxidized to W6+, producing patches of WO3 on the zirconia crystallite. The HR-TEM analysis confirmed the existence of the solid solution when the sample was annealed at 560 °C, and two types of crystalline regions were identified: One with nearly spherical morphology, an average diameter of 8 nm and the atomic distribution of tetragonal zirconia. The second one had a non-spherical morphology with well-faceted faces and dimensions larger than 30 nm, and the atom distribution of tetragonal zirconia. When samples were annealed at 800 °C two different zirconia crystallites were formed: Those where only part of the dissolved tungsten atoms segregated to crystallite surface producing patches of nanocrystalline WO3 on the crystallite surface of tetragonal zirconia stabilized with tungsten. The second type corresponded to monoclinic zirconia crystallites with patches of nanocrystalline WO3 on their surface. The tungsten segregation gave rise to the WO3-ZrO2 catalysts.  相似文献   

2.
Transparent (1−x)TeO2-xWO3 glasses with 0≤x≤0.325 mol were synthesized by the fast quenching technique. Several complementary techniques as infrared, X-ray photoelectron and X-ray absorption spectroscopies were used to approach the structure of these tungsten oxide-tellurite glasses. Special attention was paid to the oxidation state and the coordination state of tungsten atoms. The structural results show that (1−x)TeO2-xWO3 glasses present characteristic tellurium environments which vary with their chemical composition while tungsten ions always adopt an octahedral configuration.  相似文献   

3.
The new compound Rb2MgWO2(PO4)2 has been synthesized and characterized by a single-crystal X-structure determination, and IR and Raman spectroscopic studies. The crystal structure is orthorhombic, space group Pbca, with the unit cell dimensions a=9.891(2), b=12.641(2), , Z=8. Compared to the K2MIIWO2(PO4)2 series, where MII=Mg, Mn, Fe, Co, Ni, and Cd, the volume of the unit cell in the present compound is nearly doubled. The MgO6 and WO6 octahedra are arranged into polyhedral groups consisting of two edge sharing MgO6 joined by corners with two WO6 octahedra. These groups are interconnected through the PO4 tetrahedra into layers in a×b plane. The Rb+ ions perform thermally activated displacements within the cavities formed between the polyhedral layers. The origin of various Raman and IR modes is discussed. These results indicate that a clear energy gap exists between the stretching and remaining modes. The most intense modes are shown to be due to vibrations of the W-O bonds.  相似文献   

4.
Equations relating bond strength (valence) to bond length have been developed for tungsten-oxygen and phosphorus-oxygen bonds. Bond-valence sums have been carried out for the different tungsten atoms in phosphate tungsten bronzes and other mixed-valence tungsten oxides and for the Mo atoms in TeMo5O16. Valences intermediate between 5 and 6 are generally found, in agreement with physical measurements that indicate delocalization of d electrons in these materials. Evidence is presented that shows that the degree of distortion of WO6 octahedra increases with apparent oxidation state of tungsten.  相似文献   

5.
A Novel Synthetic Access to the Tungsten Bronze Cs0.29WO3 and its Crystal Structure The hexagonal tungsten bronze Cs0.29WO3 was obtained in form of black, prismatic crystal by the reduction of WO3 with molten cesium iodide at 700°C. Its crystal structure was determined by X-ray diffraction (399 unique observed reflexions, R = 0.058). Crystal data: a = 741.2(3), c = 760.0(5) pm, space group P6322, Z = 6. It corresponds to the known structure of hexagonal tungsten bronzes, having tungsten atoms displaced from the octahedra centres by 11.9 pm and with three different W? O bond lengths (198, 191, 187 pm). The WO6 octahedra are slightly titled mutually.  相似文献   

6.
An in silico study of semiconductor quantum dots of the CdTe family doped with atoms of rare earth elements is performed based of density functional theory. An ab initio computer design of quantum dots based on CdTe nanoparticles doped with Eu и Gd atoms is carried out. Partial densities of states of CdTe:Eu and CdTe:Gd quantum dots are calculated and analyzed. X-ray absorption near edge (XANES) spectra near the Eu K-, L1-, and L3- and Gd K-, L1-, and L3-edges of CdTe:Eu and CdTe:Gd quantum dots are calculated. The sensitivity of XANES spectroscopy for the verification of parameters of a nanosized atomic structure of quantum dots based on CdTe particles doped with atoms of rare earth elements and the determination of the local atomic structure around the atoms of rare earth elements in quantum dots is demonstrated.  相似文献   

7.
Oxidative desulfurization (ODS) of organic compounds containing sulfur element from a model oil was performed using tungsten oxide catalysts supported on mesoporous silica with cubic Ia3d mesostructure, well-defined mesopores (7.2 nm), high surface area (719 m2/g), and three-dimensional pore network (WO x /KIT-6). The prepared WO x /KIT-6 catalysts (5–20 wt% WO x ) were characterized by X-ray diffraction analysis, N2 sorption measurements, electron microscopy, H2-temperature programmed reduction, Raman spectroscopy, and thermogravimetric analysis. Among the mesoporous catalysts, 10 wt% WO x /KIT-6 exhibited the best catalytic performance. Sulfur-containing organic compounds, such as dibenzothiophene, 4,6-dimethyldibenzothiophene, and benzothiophene, were completely (100 %) removed from the model oil over 10 wt% WO x /KIT-6 catalyst in 2 h. In addition, the catalyst could be reused several times with only slight decrease in catalytic activity.  相似文献   

8.
The comparison of IR-spectra of tellurite glasses and their crystal products containing from 5 up to 45 mol% WO3 indicates that the modifier does not change the coordination of tellurium. The IR-spectra of glasses containing small WO3 amounts show a band at 925 cm?1, which shifts up to 950 cm?1 with the increase in the tungsten concentration. The effect is specific of the vitreous state and may be explained by the change in the coordination of tungsten.  相似文献   

9.
On Hexagonal Perovskites with Cationic Vacancies. V. Structure Determination on H? Ba2Lu2/31/3WO6 — a Novel Rhombohedral Stacking Polytype with 18 Layers Compounds of type Ba2B□1/3WVIO6 with BIII ? Gd—Lu, Y are polymorphic They crystallize in a cubic 1:1 ordered perovskite structure and in a new rhombohedral perovskite stacking polytype of 18 L respectively. By intensity calculations out of the three possible stacking sequences (4)(2), (5)(1) and (3)1(1)1 (all space group R3 m) the sequence (5)(1) can be selected. For H? Ba2Lu2/31/3WO6 the refined R′ factor is 14.1%. The structure contains groups of three octahedra connected with another by common faces which are linked with each other by three corner sharing octahedra. In the block of three face sharing octahedra the central octahedral lattice site is vacant, the two outer positions are occupied by tungsten atoms. According to this distribution a direct contact of occupied face sharing octahedra is absent.  相似文献   

10.
X-ray photoelectron spectroscopy (XPS) and laser Raman scattering (LRS) techniques have been employed to investigate the structure of amorphous (CuI)0.45–(Ag2WO4)0.55 solid electrolyte sample. XPS results reveal the presence of both Cu+ and Cu2+ ions whereas tungsten is found to exist only in the oxidation state of +6. The deconvolution of the O 1s spectrum into non-bridging and bridging oxygen atoms in conjunction with the laser Raman analysis tend to show that the amorphous (CuI)0.45–(Ag2WO4)0.55 solid electrolyte sample is composed mostly of octahedral WO6 units that probably form [W4O16]8− tetramer clusters, the existence of which is unique in the case of oxyhalide glasses.  相似文献   

11.
The actual oxygen environment of the tungsten dopant in the Ba2In2−xWxO5+3x/2 solid solution was revealed by combining X-ray absorption spectroscopy at the tungsten LI and LIII edges and at the indium LI edge. Whatever the substitution ratio, the tungsten atoms exhibit a regular octahedral environment. When the substitution ratio increases, the oxygen vacancies are progressively filled until their total occupancy for x=2/3. For x?0.3, the perovskite structure is stabilised; the tungsten atoms are randomly distributed in the structure. Although X-ray diffraction revealed a cubic symmetry for these compositions, a local distortion of the indium environment is observed when a tungsten atom is in its surrounding.  相似文献   

12.
Mixed alkali borotungstate glasses with xLi2O–(30  x)Na2O–10WO3–60B2O3 (0  x  30) composition were prepared by melt quench technique. FT-IR and Raman spectroscopic studies were employed to investigate the structure of all the prepared glasses. Acting as complementary techniques, both IR and Raman measurements revealed that the network structure of the present glasses mainly based on BO3 and BO4 units placed in different structural groups. Raman spectra confirm the IR results regarding the presence of tungsten ions mainly as WO6 groups. In the present work, the mixed alkali effect (MAE) has been investigated in the above glass system using FTIR and Raman studies.  相似文献   

13.
The crystal structure of a new type arylarsonic polytungstate [C(NH2)3]4[p-NH3C6H4As)2W6O25]·4H2O was determined by single-crystal X-ray diffraction analysis. It belongs to triclinic, space group \[ P\bar 1 \], with cell dimensions a = 12.863(3), b = 18.912(3), c = 21.383(4) Å α = 91.14(2)°, β = 93.65(3)°, γ = 92.25(3)°, V = 5185.9 Å3, Z = 4, Dc = 2.753 g/cm3. The intensity data were collected on an Enraf-Nonius CAD4 diffractometer with Mo Kα radiation. The positions of all tungsten and arsenic atoms were determined by direct method. The other non-hydrogen atoms were revealed by difference Fourier synthesis. The structure was refined by fullmatrix least-squares procedure to a final R value of 0.070. The crystal structure contains two similar but nonidentical molecules. Two similar anions consist of a ring of six WO6 octahedra, which are connected with one face-sharing, two corner-sharings and three edge-sharings, and two p-aminophenylarsonic tetrahedra capped above and below the ring. In each WO6 ring, four tungsten atoms, which are joined with edge-sharing oxygen atoms, are almost coplanar, while the two others, which are joined with face-sharing oxygen atoms, protrude out of the ring towards the same side. The two arsenic atoms in each anion are not equivalent in their bonding manner. In each anion, all non-hydrogen atoms of each organic group are in the same plane. Each molecule contains one anion, four C(NH2)3+ cations and four water molecules. There are many hydrogen bonds between cations and anions throughout the whole crystal. The amino groups can accept protons, so that the charge of the resulting anion decreases and [(RAs)2W6O25]4- type complexes are formed.  相似文献   

14.
Subsolidus phase relationships in the In2O3-WO3 system at 800-1400°C were investigated using X-ray diffraction. Two binary-oxide phases—In6WO12 and In2(WO4)3—were found to be stable over the range 800-1200°C. Heating the binary-oxide phases above 1200°C resulted in the preferential volatilization of WO3. Rietveld refinement was performed on three structures using X-ray diffraction data from nominally phase-pure In6WO12 at room temperature and from nominally phase-pure In2(WO4)3 at 225°C and 310°C. The indium-rich phase, In6WO12, is rhombohedral, space group (rhombohedral), with Z=1, a=6.22390(4) Å, α=99.0338(2)° [hexagonal axes: aH=9.48298(6) Å, c=8.94276(6) Å, aH/c=0.9430(9)]. In6WO12 can be viewed as an anion-deficient fluorite structure in which 1/7 of the fluorite anion sites are vacant. Indium tungstate, In2(WO4)3, undergoes a monoclinic-orthorhombic transition around 250°C. The high-temperature polymorph is orthorhombic, space group Pnca, with a=9.7126(5) Å, b=13.3824(7) Å, c=9.6141(5) Å, and Z=4. The low-temperature polymorph is monoclinic, space group P21/a, with a=16.406(2) Å, b=9.9663(1) Å, c=19.099(2) Å, β=125.411(2)°, and Z=8. The structures of the two In2(WO4)3 polymorphs are similar, consisting of a network of corner sharing InO6 octahedra and WO4 tetrahedra.  相似文献   

15.
A series of materials WO3/Zr-SBA-15 were synthesized by modifying zirconium-incorporated SBA-15 mesoporous molecular sieve with various loadings of tungsten oxide, followed by calcining at different temperatures. The structures and the surface states of these materials were determined by XRD, TEM, N2 adsorption–desorption and Raman spectroscopy, while the surface acidities were characterized by FT-IR spectroscopy of pyridine adsorption, NH3-TPD, and the Hammett indicator method. To evaluate the catalytic activities of the prepared materials, the benzoylation of anisole was chosen as the model reaction. All the results reveal that the synthesized samples are strong solid acids, even solid superacids under some conditions, with uniform mesoporous structure and high surface area. The dispersion state of the supported WO3, which depends on the WO3 loading and the calcination temperature, has a direct influence on the acidity and catalytic activity of the materials. Moreover, the high acid strength is attributed to the WO bond nature of the complex formed by the interaction between WO3 and the surface of Zr-SBA-15.  相似文献   

16.
The SCF-X -SW method in an overlapping atomic spheres approximation has been used to calculate the electronic structure, ionization potentials, energies and oscillator strengths of the allowed optical transitions and also some of the one-electron properties of the MoO2Cl2 molecule. The electronic absorption spectra of vapours over molybdenum and tungsten dioxodibromides have been measured. Interpretation of the experimental electronic absorption spectra of the MoO2Cl2, MoO2Br2 and WO2Br2 molecules is discussed.  相似文献   

17.
The structure of a new barium tungsten bronze, Ba0.15WO3, has been established by X-ray diffraction and high-resolution microscopy studies. This bronze is orthorhombic, space group Pbm2 or Pbmm, with a = 8.859(3) Å, b = 10.039(8) Å, and c = 3.808(2)Å. The “WO3” framework is built up from corner-sharing WO6 octahedra forming pentagonal tunnels where the barium ions are located. Structural relationships with hexagonal tungsten bronze and tetragonal tungsten bronze structures are discussed.  相似文献   

18.
The electronic structures of quaternary pnictides ZrCuSiPn (Pn=P, As) were analyzed by X-ray photoelectron spectroscopy (XPS) and X-ray absorption near-edge spectroscopy (XANES). Shifts in the core-line XPS and the XANES spectra indicate that the Zr and Cu atoms are cationic, whereas the Si and Pn atoms are anionic, consistent with expectations from simple bonding models. The Cu 2p XPS and Cu L-edge XANES spectra support the presence of Cu1+. The small magnitudes of the energy shifts in the XPS spectra suggest significant covalent character in the Zr-Si, Zr-Pn, and Cu-Pn bonds. On progressing from ZrCuSiP to ZrCuSiAs, the Si atoms remain largely unaffected, as indicated by the absence of shifts in the Si 2p3/2 binding energy and the Si L-edge absorption energy, while the charge transfer from metal to Pn atoms becomes less pronounced, as indicated by shifts in the Cu K-edge and Zr K, L-edge absorption energies. The transition from two-dimensional character in LaNiAsO to three-dimensional character in ZrCuSiAs proceeds through the development of Si-Si bonds within the [ZrSi] layer and Zr-As bonds between the [ZrSi] and [CuAs] layers.  相似文献   

19.
LaCoO3 perovskite was prepared at 700°C using citrate precursors. The product was then characterized with X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS). The powder XRD pattern indicates rhombohedral or its monoclinic I2/a subgroup symmetry. The electronic configuration and the short-range atomic structure of the LaCoO3 perovskite at room temperature were investigated using synchrotron near-edge X-ray absorption spectroscopy (XANES) and extended X-ray absorption spectroscopy (EXAFS). From the XANES region of the XAS we conclude that Co(III) is at least partly in its intermediate- or high-spin state, which is in accordance with most of the published literature on LaCoO3 perovskite. The EXAFS region of the LaCoO3 perovskite spectrum, which up to now was almost not investigated, was simulated satisfactorily for the first two radial structure peaks in terms of the dominant scattering contributions generated with the FEFF8 code and the structural information available from crystallographic data. The best simulation results were obtained with I2/a symmetry. The obtained amplitude reduction factor, zero-energy shift and Debye-Waller factors are useful reference values for data analyses of similar compounds like partly substituted LaCoO3 perovskite, such as La1−xCaxCoO3 or La1−xSrxCoO3, which are materials of technical interest in catalyst and other applications.  相似文献   

20.
The crystal structures of two sodium tungsten bronzes, Na0.33WO3 and Na0.48WO3, have been determined by three-dimensional single-crystal X-ray analysis. They were found to crystallize in the tetragonal space groups P4¯21m(a=12.097,c=3.754Å,Z=10) and P4/mbm (a = 12.150,c = 3.769Å, Z = 10), respectively. The structures were solved by standard Patterson and Fourier techniques and refined by full-matrix least-squares to final conventional discrepancy indices of 8.9% for Na0.33WO3 and 8.4% for Na0.48WO3. In general, the oxygen atoms were found to be either twofold or fourfold disordered, suggesting that the WO6 octahedra do not have axes exactly aligned parallel to the crystallographicc-axis. The structure found can be viewed as a composite of two kinds of domain structures. These domain structures would require a doubling of thec-axis along with selection of newa- andb-axes along the [1 1 0] and [[1¯10]] directions. There exist pentagonal and tetragonal sites in both these sodium tungsten bronzes for sodium atoms occupancy. In Na xWO3, x = 0.48, all the pentagonal sites are filled and 40% of the smaller tetragonal sites are also occupied. As x decreases to 0.33 though, only the pentagonal sites are occupied. A relation between the x value and the Na xWO3 crystal structures is postulated, extrapolating from the results found in these structure determinations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号