首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Radiation chemical reactions ofOH, O•−, N3 and e aq t- witho- and m-hydroxycinnamic acids were studied. The second-orderrateconstantsforthereaction ofOH with ortho and meta isomers in buffer solution at pH7 are 3.9±0.2 × 109 and 4.4 ± 0.3 × 109 dm3 mol-1 s-1 respectively. At pH 3 the rate with the ortho isomer was halved (1.6 ± 0.4 × 109 dm3 mol-1 s-1) but it was unaffected in the case of meta isomer (k = 4.2±0.6 × 109dm3mol-1 s-1). The rate constant in the reaction of N3 with the ortho isomer is lower by an order of magnitude (k = 4.9 ± 0.4 × 108 dm3 mol-1s-1). The rates of the reaction of e aq t- with ortho and meta isomers were found to be diffusion controlled. The transient absorption spectrum measured in theOH witho-hydroxycinnamic acid exhibited an absorption maximum at 360 nm and in meta isomer the spectrum was blue-shifted (330 nm) with a shoulder at 390 nm. A peak at 420 nm was observed in the reaction of Obb−with theo-isomer whereas the meta isomer has a maximum at 390 and a broad shoulder at 450 nm. In the reaction of the absorption peaks were centred at 370–380 nm in both the isomers. The underlying reaction mechanism is discussed.  相似文献   

2.
The structure and stability of classical and bridged C2H 3 + is reinvestigated. The SCF and CEPA-PNO computations performed with flexibles andp basis sets including twod-sets on carbon confirm our previous results. We find the protonated acetylene structure to be more stable than the vinyl cation by 3.5–4 kcal/mol. The energy barrier for the interconversion of these two structures is at most a few tenths of a kcal/mol. The equilibrium SCF geometries of Weberet al. [15] are affected insignificantly by further optimization at the CEPA-PNO level. Several structures for the interaction of C2H 3 + with HF have been investigated at the SCF level. With our largest basis set which includes a complete set of polarization functions we find a remarkable levelling of the stabilities of most of the structures. In these cases the stabilization energy ΔE ranges from −10 to −13 kcal/mol.  相似文献   

3.
Ab initio HF/6–31G* calculations ofO-vinylacetoxime monohydrates and cations were performed. Each conformer forms two stable H-complexes with participation of N and O atoms. The former have planar heavy-atom skeletons, whereas the water molecule in the latter is located above the plane of the proton-acceptor complex. The complexes stabilized by N...HO and O...HO bonds have different dipole moments and frequencies of the OH stretching vibrations. The most energetically favorable cation is formed by adding a proton to the Cβ atom of the vinyl group ofO-vinylacetoxime. Theap,ap-conformer (ap is antiperiplanar) of this cation is 6.5 and 34.9 kcal mol−1 more stable than the onium cations with the NH+ and OH+ fragments, respectively, and is characterized by polarization and appreciable lengthening of the N−O and C=C bonds. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 4, pp. 597–600, April, 2000.  相似文献   

4.
Pentacoordination of carbon atom in bicyclic organic compounds of the pentalene type was studied by theab initio RHF/6-31G** and MP2(full)/6-31G** methods. It was shown that intramolecularS N 2 reactions with energy barriers within the energy scale of NMR spectroscopy can occur in systems in which a linear orientation of the attacking and leaving groups is realized. The barrier to the intramolecular nucleophilic substitution reaction in 2,3-dihydro-3-formylmethylenefuran is 36.9 (RHF) and 27.7 kcal mol−1 (MP2) and decreases to 16.4 and 19.4 kcal mol−1, respectively, in the case of diprotonation at the O atoms in this system. For model pentalene type compounds containing electron-deficient B atoms in the ring, theab initio calculations predict a further decrease in the barrier height (down to less than 10 kcal mol−1). Translated fromIzvestiya Akademii Nauk, Seriya Khimicheskaya, No. 7, pp. 1246–1256, July, 1999.  相似文献   

5.
Summary Ab initio molecular orbital calculations give small stabilization energies for the various Na(CH4)+ adducts (less than 4 kcal mol–1), but predict a stronger binding for the copper compounds (about 13 kcal mol–1). The different behaviour of Na+ and Cu+, already present at the SCF level, is reinforced by electron correlation. This can be attributed to an important contribution of the dispersion energy to the binding energy of the copper ion: about 40% of the total, including basis set superposition corrections.Dedicated to Mrs A. Pullman  相似文献   

6.
A Ti/SnO2 + RuO2 + MnO2 electrode was prepared by thermal decomposition of their salts. Results from SEM and XPS analyses, respectively, indicate that the coating layer exhibits a compact structure and the oxidation state of Mn in the coating layer is +IV. The experimental activation energy for the oxygen evolution reaction, which increased linearly with increasing overpotential, is about 8 kJ⋅mol−1 at the equilibrium potential (η=0). The electrocatalytic characteristics of the anode are discussed in terms of ligand substitution reaction mechanisms (Sn1 and Sn2). It was found that the transition state for oxygen evolution at the anode in acidic solution follows a dissociative mechanism (Sn1 reaction). The Ti/SnO2 + RuO2 + MnO2 anode in conjunction with UV illumination was used to degrade phenol solutions, where the concentration of phenol remaining was determined by high-performance liquid chromatography (HPLC). The results indicate that the degradation efficiency of phenol on the anode can reach 96.3% after photoelectrocatalytic oxidation for 3 h.  相似文献   

7.
The simplest quantum-chemical models of hydrogen spillover over a graphite-like surface as a proton or radical have been considered. The condensed planar C24H12 molecule was used as a model surface. Theab initio calculations of the interaction of hydrogen with the model surface were carried out by the restricted Hartree-Fock (HF) method in the STO-3G and 6-31 G* basis sets. The radical hydrogen can not bind to such a surface, whereas the proton binds to it with an energy release of 186 kcal mol−1. The activation energy of the transfer of the proton between two neighboring carbon atoms (10 kcal mol−1) has been determined. The simplest model of the hydrogen migration as a proton over the model surface can be used for describing the spillover of hydrogen over the graphite surface. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 3, pp. 428–430, March, 1997.  相似文献   

8.
The equilibrium geometric parameters and structures of transition states of internal rotation for the molecules of methyldicyanophospine MeP(CN)2 and its isocyano analog MeP(NC)2 were calculated by the RHF and MP2 methods with the 6–31G* and 6–31G** basis sets. At the MP2 level, the total energy of cyanide is −35 kcal mol−1 lower than that of isocyanide and the barriers to internal rotation of methyl group for MeP(CN)2 and MeP(NC)2 are 2.2 and 2.7 kcal mol−1, respectively. For both molecules, the one-dimensionalab initio potential functions of internal rotation approximated by a truncated Fourier series were used to determine the frequencies of torsional transitions by solving direct vibrational problems for a non-rigid model. The Raman spectrum of crystalline MeP(CN)2 was recorded in the range 3500–50 cm−1. The vibrational spectra of this compound were interpreted by scalingab initio force fields calculated by the RHF and MP2 method. The vibrational spectrum of methyldiisocyanophosphine was predicted with the use of the obtained scale factors. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1703–1714, September, 1998.  相似文献   

9.
The heat capacity of PbMO3 (M=Ti, Zr and Hf) at constant pressure was measured using a differential scanning calorimeter (DSC) from room temperature up to 870 K. Large anomalies were found in the heat capacity curves, corresponding to the ferroelectricparaelectric phase transition in PbTiO3 (PT), the antiferroelectric-paraelectric phase transitions in PbZrO3 (PZ) and PbHfO3 (PH). The transition entropies were estimated as 7.3 J K−1 mol−1 (PT), 9.9 J K−1 mol−1 (PZ) and 9.3 J K−1 mol−1 (PH). These values of transition entropies are much larger than that of a typical displacive-type phase transition.  相似文献   

10.
Guest-host interactions of haloperidol (Halo) with β-cyclodextrin (β-CD) have been investigated using several techniques including phase solubility diagrams (PSD), proton nuclear magnetic resonance (1H-NMR), X-ray powder diffractometry (XRPD), differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and molecular mechanical modeling (MM+). From an analysis of the PSDs, both protonated and neutral Halo (pK a=8.5) form soluble 1:1 and 1:2 Halo/β-CD complexes, while the insoluble complex has 1:2 (Halo:β-CD) stoichiometry (BS-type PSD). Ionization of Halo reduces its tendency to complex with β-CD, where the protonated species at pH=4.6 and 6.0 have K 11 values of 100 L⋅mol−1 and 298 L⋅mol−1, respectively, compared with 2000 L⋅mol−1 for neutral species at pH=10.6. The hydrophobic character of Halo was found to provide 32% of the driving force for complex stability, whereas other factors including specific interactions contribute −15 kJ⋅mol−1. 1H-NMR and MM+ studies indicate the formation of isomeric 1:1 and 1:2 complexes, where the chlorophenyl, flurophenyl, piperidine and butanone moieties become included into separate β-CD cavities. The dominant driving force for complexation is evidently van der Waals with very little electrostatic contribution. PSD, 1H-NMR, XRPD, DSC and SEM studies indicate the formation of inclusion complexes in solution and in the solid state.  相似文献   

11.
The Raman spectra of ClOF2 + cation in solutions of anhydrous HF were studied. In the ClOF2 +HF2 and ClOF2 +BF4 −HF systems, this cation exists as a pyramidal structure (C s symmetry), while in the ClOF2 +AuF6 −HF system, it exists as a planar structure (C 2v symmetry). Based on nonempirical calculations by the Hartree-Fock-Roothaan method, an explanation for the dependence of the structure of the ClOF2 + cation on the nature of the anion was proposed. For the Cl−O bond vibrations, the correlation functions of vibrational and rotational relaxations were calculated, and the characteristic times of these processes were determined. The main contribution to the formation of the band contours corresponding to the above-mentioned modes is made by the vibrational dephasing. Translated fromIzvestiya Akademii Nauk, Seriya Khimicheskaya, No. 3, pp. 432–437, March, 1998.  相似文献   

12.
Chromium(III)-carbonate reactions are expected to be important in managing high-level radioactive wastes. Extensive studies on the solubility of amorphous Cr(III) hydroxide solid in a wide range of pH (3–13) at two different fixed partial pressures of CO2(g) (0.003 or 0.03 atm.), and as functions of K2CO3 concentrations (0.01 to 5.8 mol⋅kg−1) in the presence of 0.01 mol⋅dm−3 KOH and KHCO3 concentrations (0.001 to 0.826 mol⋅kg−1) at room temperature (22±2 °C) were carried out to obtain reliable thermodynamic data for important Cr(III)-carbonate reactions. A combination of techniques (XRD, XANES, EXAFS, UV-Vis-NIR spectroscopy, thermodynamic analyses of solubility data, and quantum mechanical calculations) was used to characterize the solid and aqueous species. The Pitzer ion-interaction approach was used to interpret the solubility data. Only two aqueous species [Cr(OH)(CO3)22− and Cr(OH)4CO33−] are required to explain Cr(III)-carbonate reactions in a wide range of pH, CO2(g) partial pressures, and bicarbonate and carbonate concentrations. Calculations based on density functional theory support the existence of these species. The log 10 K° values of reactions involving these species [{Cr(OH)3(am) + 2CO2(g)Cr(OH)(CO3)22−+2H+} and {Cr(OH)3(am) + OH+CO32− Cr(OH)4CO33−}] were found to be −(19.07±0.41) and −(4.19±0.19), respectively. No other data on any Cr(III)-carbonato complexes are available for comparisons.  相似文献   

13.
Al2O3 and Al2−x Cr x O3 (x = 0.01, 0.02 and 0.04) powders have been synthesized by the polymeric precursors method. A study of the structural evolution of crystalline phases corresponding to the obtained powders was accomplished through X-Ray Diffraction and UV-vis spectroscopy (reflectance spectra and CIEL*a*b* color data). The obtained results allow to identify the γ-Al2O3 to α-Al2O3 phase transition. The single-phase α-Al2O3 powder was obtained after heat treatment at 1050 °C for 2 h. The results show that the green to red color transition and ruby luminescence lines observed for the powders of Al2−x Cr x O3 are related to the γ to α-Al2O3 phase transition and the temperature and time range for such transition depends on the chromium content.  相似文献   

14.
The gradient pathways of the reaction of nucleophilic addition of ammonia to formaldehyde were calculated for free molecules and in the NH3...H2CO...HC(O)OH complex by theab initio RHF/6-31G**, MP2(fc)/6-31G**, and MP2(full)/6-311++G** methods. Both reactions proceed concertedly. In the first case, the reaction successively passes through two transitional states with an energy barrier exceeding 35 kcal mol−1. In the case of the complex with formic acid, the reaction follows a conventional pathway, although its activation barrier calculated by the RHF/6-31G** and MP2(fc)/6-31G** methods decreases to 12.6 and 3.8 kcal mol−1, respectively. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 1, pp. 13–20, January, 1998.  相似文献   

15.
The electronic structure, geometrical parameters and relative stability of the isomeric forms of N2O3 are analysed by means of ab initio calculations. Total energies of the different isomers are given. The energy difference between the most stable conformers of the symmetric N2O3 is 4.31 Kcal mol–1 as provided by 6–31G basis set. The height of the rotational barrier determined by the ab initio technique is 7.12 kcal mol–1.Member of the Carrera del Investigador CICPBA, R. Argentina.Member of the Carrera del Investigador CONICET, R. Argentina.Predoctoral fellow of CONICET, R. Argentina.  相似文献   

16.
The geometrical parameters, normal vibration frequencies, and thermochemical characteristics of the Na2Cl+, NaCl 2 , Na3Cl 2 + , and Na2Cl 3 ions in saturated vapors over sodium chloride were calculated by the ab initio methods including electron correlation. According to calculations, the Na2Cl+ and NaCl 2 triatomic ions have a linear equilibrium D h configuration. The pentaatomic ions can exist in the form of the D h linear isomer, C 2v planar cyclic isomer, or D 3h bipyramidal isomer. At ∼1000 K the Na3Cl 2 + and Na2Cl 3 ions exist predominantly in the form of the linear isomers. The energies and enthalpies of the ion-molecule reactions involving the above ions were calculated. The formation enthalpy of the ions Δf H 0(0 K) was determined: 230 ± 2 kJ/mol (Na2Cl+), −96 ± 4 kJ/mol (Na2Cl 3 ), −616 ± 2 kJ/mol (NaCl 2 ), and −935 ± 4 kJ/mol (Na2Cl 3 ). Original Russian Text Copyright ? 2007 by T. P. Pogrebnaya, A. M. Pogrebnoi, and L. S. Kudin __________ Translated from Zhurnal Strukturnoi Khimii, Vol. 48, No. 6, pp. 1053–1061, November–December, 2007.  相似文献   

17.
Quantum chemical calculations at the HF/6-31G* and B3LYP/6-31G* levels have been performed on five explosive sensitizers, ethyl nitrate (EN), n-propyl nitrate (NPN), isopropyl nitrate (IPN), 2-ethylhexyl nitrate (EHN) and tetraethylene glycol dinitrate (TEGDN). Theoretical study has made a detailed molecular-level investigation of the title compounds. Based on the Mulliken populations and bond lengths, the fission of the O2–N3 can be acceptable reasonably. Charge distribution analysis indicates that the five nitrates produce NO2 gas during the dissociation of the O2–N3 weak bond. We also order the relative thermal stability of five nitrates on the basis of frontier orbital energy (E HOMO, E LUMO) and energy gap (ΔE = E HOMOE LUMO).  相似文献   

18.
Mechanisms of inversion of the bond configuration at the tetrahedral boron center in five-membered chelate cycles of the 1,3,2-oxazaborolidine and 1,3,2-oxazaborolidene molecules were studied by theab initio MP2(full)/6-31G** method. It was shown that enantiotopomerization occurs by a dissociative mechanism with the cleavage of the B←N bond and the formation of acyclic intermediates with tricoordinate planar boron atom. The calculated energy barriers to inversion of tetrahedral bond configurations at boron centers in the two chelate complexes are equal to 13.1 and 15.4 kcal mol−1, respectively. In contrast to 1,3,2-oxazaborolidine, internal rotation about the B−O bond in its unsaturated analog makes an appreciable contribution to the reaction coordinate. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 2, pp. 250–255 February, 1999.  相似文献   

19.
The effect of the nature of substituents at sp2-hybridized silicon atom in the R2Si=CH2 (R = SiH3, H, Me, OH, Cl, F) molecules on the structure and energy characteristics of complexes of these molecules with ammonia, trimethylamine, and tetrahydrofuran was studied by the ab initio (MP4/6-311G(d)//MP2/6-31G(d)+ZPE) method. As the electronegativity, χ, of the substituent R increases, the coordination bond energies, D(Si← N(O)), increase from 4.7 to 25.9 kcal mol−1 for the complexes of R2Si=CH2 with NH3, from 10.6 to 37.1 kcal mol−1 for the complexes with Me3N, and from 5.0 to 22.2 kcal mol−1 for the complexes with THF. The n-donor ability changes as follows: THF ≤ NH3 < Me3N. The calculated barrier to hindered internal rotation about the silicon—carbon double bond was used as a measure of the Si=C π-bond energy. As χ increases, the rotational barriers decrease from 18.9 to 5.2 kcal mol−1 for the complexes with NH3 and from 16.9 to 5.7 kcal mol−1 for the complexes with Me3N. The lowering of rotational barriers occurs in parallel to the decrease in D π(Si=C) we have established earlier for free silenes. On the average, the D π(Si=C) energy decreases by ∼25 kcal mol−1 for NH3· R2Si=CH2 and Me3N·R2Si=CH2. The D(Si←N) values for the R2Si=CH2· 2Me3N complexes are 11.4 (R = H) and 24.3 kcal mol−1 (R = F). sp2-Hybridized silicon atom can form transannular coordination bonds in 1,1-bis[N-(dimethylamino)acetimidato]silene (6). The open form (I) of molecule 6 is 35.1 and 43.5 kcal mol−1 less stable than the cyclic (II, one transannular Si←N bond) and bicyclic (III, two transannular Si←N bonds) forms of this molecule, respectively. The D(Si←N) energy for structure III was estimated at 21.8 kcal mol−1. Dedicated to Academician N. S. Zefirov on the occasion of his 70th birthday. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1952–1961, September, 2005.  相似文献   

20.
Quantum-chemical calculations of the geometry and energies of nine possible isomers of 12-vertex cobaltacarborane CpCoC2B9H11 (1) were carried out by the DFT method (PBEPBE/DGDZVP/DGA1). Thermodynamic stability of the isomers increases with increasing distance between the carbon atoms in the cage and is virtually independent of the position of the CpCo vertex. The relative stabilities of the 1,2,3-(17.57 kcal mol−1), 1,2,4-(3.72 kcal mol−1), and 1,2,9-isomers of 1 (0 kcal mol−1) are similar to the corresponding values for the ortho (17.61 kcal mol−1), meta (3.21 kcal mol−1), and para isomers (0 kcal mol−1) of carborane C2B10H12. The results of the present study confirm a close similarity of the CpCo and BH fragments in metallacarborane chemistry. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 7, pp. 1557–1559, July, 2005.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号