首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This work illustrates the practical use of combined microbore reversed-phase high-performance liquid chromatography (RP-HPLC) with electrospray ionization mass spectrometry (ESI-MS) in protein identification. The approach consisted of the detection of the abnormal beta-globin chain by ESI-MS analysis of mixtures of intact globins, which simultaneously provided their molecular masses. Separation of the polypeptide globin chains was carried out using microbore C4 RP-HPLC on-line with ESI-MS. Direct peptide-mapping ESI-MS without previous chromatographic separation was performed in order to identify tryptic peptides from whole blood. For the sequence confirmation of the abnormal peptide containing the mutation point, C18 RP-HPLC tryptic separation of the globin mixture on-line with collision-induced dissociation (CID) fragmentation was done. The y series ions allowed the identification of the hemoglobin (Hb) variant as [beta134(H12) Val > Ala]. This new Hb was named Hb Mataró, after the city where it was detected.  相似文献   

2.
A combination of mass spectrometric (MS) techniques [electrospray MS, liquid secondary ion MS (LSIMS) and MS-MS] has been used for variant hemoglobin (Hb) detection and characterization. Electrospray MS allowed analysis of mixtures of intact globins giving simultaneously the molecular weights (accuracy 1-2 Da) and information about relative amounts of globins present. Currently, 14 Da is the minimum molecular weight difference required experimentally to accurately measure different species present in a mixture of 15-16 kDa proteins. Thus 80 and 79% of the known variants of alpha and beta chains, respectively, can be detected in mixtures with their normal counterparts, including Hb S (molecular weight difference = 30 Da). Abnormal hemoglobins detected were fractionated by C4 reversed-phase high-performance liquid chromatography (HPLC), and the separated globin chains (or the mixture of whole precipitated globin) were digested by trypsin. The tryptic peptides were separated by C18 reversed-phase HPLC and analyzed by LSIMS to narrow down the mutation site to a single peptide. The mass measured in LSIMS frequently corresponded to a unique structure, thus giving the unequivocal identification of the mutation and its site. Where there was ambiguity, tandem MS on a Kratos Concept four-sector instrument was used for sequencing the abnormal peptide. The practical use of the methodologies presented is illustrated through analysis and identification of Hb G-San Jose, Hb Stanleyville II, Hb S and Hb Willamette.  相似文献   

3.
An electrospray mass spectrometric approach to the identification of a human hemoglobin (Hb) variant involving a Cys residue incorporation is presented. In Hb Ta-Li (beta83Gly --> Cys), Cys83 forms inter-molecular disulfide bridges. Routine analysis of the denatured Hb showed the presence of a minor beta chain variant whose mass apparently was 1 Da less than the expected mass difference of 46 Da for a Gly --> Cys substitution. Reduction of the globin chains with dithiothreitol gave an intense monomer with the expected mass difference for the Gly --> Cys substitution. After reprocessing the original raw data from the denatured Hb and taking into account the possibility of dimer formation, a component was revealed whose mass was consistent with a disulfide linked dimer of Ta-Li beta globins. The mutation was localized to peptide betaT10 by analysis of a tryptic digest. Tandem mass spectrometry and DNA sequencing confirmed the Gly --> Cys substitution occurred at residue 83 of the beta chain. Problems encountered in identifying the components in mixtures of monomers and dimers are discussed.  相似文献   

4.
Understanding the function of macromolecular complexes is related to a precise knowledge of their structure. These large complexes are often fragile high molecular mass noncovalent multimeric proteins. Classical biochemical methods for determination of their native mass and subunit composition were used to resolve their quaternary structure, sometimes leading to different models. Recently, the development of mass spectrometry and multi-angle laser light scattering (MALLS) has enabled absolute determination of native masses and subunit masses. Electrospray ionization mass spectrometry (ESI-MS) was used in denaturing and native conditions to probe subunit composition and noncovalent assemblies masses up to 2.25 MDa. In a complementary way, MALLS provides mass and size estimation in various aqueous solvents. ESI-MS method can also give insights into post-translational modifications (glycosylation, disulfide bridges ). By combining native mass and subunit composition data, structural models can be proposed for large edifices such as annelid extracellular hexagonal bilayer hemoglobins (HBL Hb) and crustacean hemocyanins (Hc). Association/dissociation mechanisms, protein-protein interactions, structural diversity among species and environmental adaptations can also be addressed with these methods. With their absolute mass determination, the very high precision of spectrometry and the versatile nature of light scattering, ESI-MS and MALLS have provided a wealth of data helping to resolve parts of controversies for HBL-Hb models and opening access to new fields of investigation in structural diversity and molecular adaptation. In this review we will focus on annelid HBL-Hb and on crustacean Hc and on the original contributions of ESI-MS and MALLS in this field.  相似文献   

5.
A combination of mass spectrometric techniques (electrospray mass spectrometry, liquid secondary-ion mass spectrometry (LSIMS), tandem mass spectrometry) has been used for variant hemoglobin detection and characterization. Electrospray mass spectrometry allowed analysis of mixtures of intact globins giving the molecular weights (accuracy 1-2 Da), and information about relative amounts of globins present, simultaneously. Abnormal hemoglobins detected in this way and by other means (screening, clinical symptoms) were fractionated by C-4 reverse phase high-performance liquid chromatography (HPLC), and the separated globin chains (or the mixture of whole precipitated globin) were digested with trypsin. The tryptic peptides were separated by C-18 reverse phase HPLC and analysed by LSIMS to narrow down the mutation site to a single peptide. In some instances, the molecular weight of a variant peptide was sufficient to determine the mutation uniquely. When molecular weight information alone was insufficient to identify the mutation and its site, the peptide was sequenced by tandem mass spectrometry on a 4-sector instrument. In cases where more than one possible mutation site was present in the peptide and the mutation resulted in a change of only 1 Da in the peptide mass, the resolution and mass measurement accuracy of the 4-sector machine were essential in determining the correct sequence. The practical application of the methodologies presented is illustrated by the identification and analysis of Hb G-San Jose, Hb Willamette and D-Iran.  相似文献   

6.
Four isomers of steroidal saponins were differentiated using multiple-stage tandem mass spectrometry combined with electrospray ionization (ESI-MS(n)). With the addition of lithium salt, the [M+Li](+) ions of saponins were observed in the ESI spectra. MS(n) spectra of these [M+Li](+) ions provided detailed structural information and allowed differentiation of the four isomeric saponins. The cross-ring cleavage ions from the saccharide chains of the saponins could be used as diagnostic ions for information concerning the linkage of the sugar moieties of the saponins. The masses of the X, A, Y and C type fragment ions formed from [M+Li](+) ions of the isomeric saponins provided information defining the methyl group locations.  相似文献   

7.
Protein tyrosine nitration is one of the important regulatory mechanisms in various cellular phenomena such as cell adhesion, endo/exo-cytosis of cellular materials, and signal transduction. In the present study, electrospray ionization tandem mass spectrometry (ESI-MS/MS) with a linear ion-trap mass spectrometer was applied for identification of nitrated proteins and localization of the modified tyrosine residues. When angiotensin II(DRVYIHPF) was nitrated in vitro with tetranitromethane (TNM), the mass spectrum showed a shift of +45 Da which corresponded to tyrosine nitration. An additional +29 Da mass shift was also detected by ESI-MS. This differed from nitrated peptide analysis with matrix-associated laser desorption/ionization mass spectrometry (MALDI-MS), which showed oxygen neutral loss from the nitrated tyrosine residues upon laser irradiation. Hence the +29 Da mass shift of the nitrated peptide observed by ESI-MS suggested the introduction of an NO group for nitrosylation of tyrosine residues. To confirm this in vitro nitrosylation on the protein level, bovine serum albumin was in vitro nitrated with TNM and analyzed by ESI-MS/MS. As expected, +29 as well as +45 Da mass shifts were detected, and the +29 Da mass shift was found to correspond to the modification on tyrosine residues by NO. Although the chemical mechanism by which this occurs in ESI-MS is not clear, the +29 Da mass shift could be a new potential marker of nitrosylated peptides.  相似文献   

8.
Some compounds readily form [M+46]+ adduct ions during positive ion electrospray ionization mass spectrometry ((+)ESI-MS) analysis. These [M+46]+ ions were characterized as [M+CH3CH2NH2+H]+ by accurate mass determination. Ethylamine involved in the adduct was proposed to be the reduction product of acetonitrile and this was confirmed using deuterated acetonitrile. Other nitrile-containing compounds tested, including isobutyronitrile and benzonitrile, also formed the adduct ions of the respective amine forms under (+)ESI-MS conditions. Hydrogen/deuterium exchange experiments demonstrated that the reductive hydrogen originated from water. Reduction of nitriles (R-CN) to their respective amines (R-CH2NH2) under (+)ESI-MS conditions expands the ability to identify nitrile-containing chemical unknowns.  相似文献   

9.
Mass spectra of commercially obtained hemoglobin (Hb) show higher levels of monomer and dimer ions, heme-deficient dimer ions, and apo-monomer ions than hemoglobin freshly prepared from blood. This has previously been attributed to oxidation of commercial Hb. Further, it has been reported that that dimer ions from commercial bovine Hb have lower collision cross sections than low charge state monomer ions. To investigate these effects further, we have recorded mass spectra of fresh human Hb, commercial human and bovine Hb, fresh human Hb oxidized with H2O2, lyophilized fresh human Hb, fresh human Hb both lyophilized and chemically oxidized, and commercial human Hb oxidized with H2O2. Masses of α-monomer ions of all hemoglobins agree with the masses expected from the sequences within 3 Da or better. Mass spectra of the β chains of commercial Hb and oxidized fresh human Hb show a peak or shoulder on the high mass side, consistent with oxidation of the protein. Both commercial proteins and oxidized fresh human Hb produce heme-deficient dimers with masses 32 Da greater than expected and higher levels of monomer and dimer ions than fresh Hb. Lyophilization or oxidation of Hb both produce higher levels of monomer and dimer ions in mass spectra. Fresh human Hb, commercial human Hb, commercial bovine Hb, and oxidized commercial human Hb all give dimer ions with cross sections greater than monomer ions. Thus, neither oxidation of Hb or the difference in sequence between human and bovine Hb make substantial differences to cross sections of ions.  相似文献   

10.
Phosphatidylethanolamines (PEs) are one of the major constituents of cellular membranes, and, along with other phospholipid classes, have an essential role in the physiology of cells. Profiling of phospholipids in biological samples is currently done using mass spectrometry (MS). In this work we describe the MS fragmentation of sodium adducts of 2-oleoyl-1-palmitoyl-sn-glycero-3-phosphatidylethanolamine (POPE) and 2-linoleoyl-1-palmitoyl-sn-glycero-3-phosphatidylethanolamine (PLPE). This study was performed by electrospray ionization tandem mass spectrometry (ESI-MS/MS) using three different instruments and also by matrix-assisted laser desorption/ionization tandem mass spectrometry (MALDI-MS/MS). All MS/MS spectra show product ions related to the polar head fragmentation and product ions related to the loss of acyl chains. In ESI-MS/MS spectra, the product ions [M+Na-R1COOH-43]+ and [M+Na-R2COOH-43]+ show different relative abundance, as well as [M+Na-R1COOH]+ and [M+Na-R2COOH]+ product ions, allowing identification of both fatty acyl residues of PEs, and their specific location. MALDI-MS/MS shows the same product ions reported before and other ions generated by charge-remote fragmentation of the C3-C4 bond (gamma-cleavage) of fatty acyl residues combined with loss of 163 Da. These fragment ions, [M+Na-(R2-C2H3)-163]+ and [M+Na-(R1-C2H3)-163]+, show different relative abundances, and the product ion formed by the gamma-cleavage of sn-2 is the most abundant. Overall, differences noted that are important for identification and location of fatty acyl residues in the glycerol backbone are: relative abundance between the product ions [M+Na-R1COOH-43]+ > [M+Na-R2COOH-43]+ in ESI-MS/MS spectra; and relative abundance between the product ions [M+Na-(R2-C2H3)-163]+ > [M+Na-(R1-C2H3)-163]+ in MALDI-MS/MS spectra.  相似文献   

11.
A new variant of beta-casein was detected in the casein fraction obtained from milk of a goat belonging to an autochthonous breed of southern Italy, "Argentata dell'Etna". Reversed-phase high-performance liquid chromatography/electrospray ionization mass spectrometry (RP-HPLC/ESI-MS) analysis indicated that the new beta-casein variant, here named D, has a M(r) 15 Da higher than that of variant C previously described. The modification in the amino acid sequence responsible for the 15 Da difference in M(r) between variants C and D was determined by coupling trypsin digestion with matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) and RP-HPLC/ESI-MS, and it was demonstrated that it is due to the point mutation Val(207) --> Asn(207). The phosphorylation pattern of the new variant D was shown to be identical to that of variant C, as the protein shows two phosphorylation levels, 5 and 6P, occurring with comparable relative abundances. Ser35 was determined as one of the phosphorylation sites, whereas the others were probably analogous to those determined previously for the beta-Cn variant C, at Thr12 and Ser1517-19. The results reported here indicate that the combined use of RP-HPLC/ESI-MS, MALDI-TOFMS and MS/MS represents a powerful tool for the detection and characterization of minor components present in complex protein mixtures.  相似文献   

12.
The dissociation reactions of the adduct ions derived from the four self-complementary deoxydinucleotides, d(ApT), d(TpA), d(CpG), d(GpC), and alkali-metal ions were studied in detail by positive ion electrospray ionization multiple-stage mass spectrometry (ESI-MS(n)). For the [M + H](+) ions of the four deoxydinucleotides, elimination of 5'-terminus base or loss of both of 5'-terminus base and a deoxyribose were the major dissociation pathway. The ESI-MS(n) spectra showed that Li(+), Na(+), and Cs(+) bind to deoxydinucleotides mainly by substituting the H(+) of phosphate group, and these alkali-metal ions preferred to bind to pyrimidine bases rather than purine bases. For a given deoxydinucleotide, the dissociation pathway of [M + K](+) ions differed clearly from that of [M + Li](+), [M + Na](+), and [M + Cs](+) ions. Some interesting and characteristic cleavage reactions were observed in the product-ion spectra of [M + K](+) ions, including direct elimination of deoxyribose and HPO(3) from molecular ions. The fragmentation behavior of the [M + K](+) and [M + W](+) (W = Li, Na, Cs) adduct ions depend upon the sequence of bases, the interaction between alkali-metal ions and nucleobases, and the steric hindrance caused by bases.  相似文献   

13.
Novel cationic porphyrin derivatives having a galactose or a bis(isopropylidene)galactose unit linked directly to a pyridine or to an aminophenyl group were characterized by electrospray tandem mass spectrometry (ESI-MS/MS). The electrospray mass spectra (ESI-MS) show the M(+) ions, since these porphyrins are already monocharged in solution. The fragmentation of these ions under ESI-MS/MS conditions was studied and it was found that elimination of the sugar residue as a radical (-163 or -243 Da) is a common fragmentation pathway. Loss of the sugar unit as a neutral fragment (-162 or -242 Da) and cross-ring fragmentations typical of glyco-derivatives are also observed for the pyridinium glycoporphyrins, but they are absent in the case of ammonium glycoporphyrins. The cationic beta-pyridiniumvinyl porphyrins show an atypical fragmentation due to the cleavage of the C(5)-C(6) bond of the sugar unit. Overall, the different patterns of fragmentation observed in the ESI-MS/MS spectra of the sugar pyridinium porphyrins and of the sugar ammonium phenyl porphyrins can give important information about the type of spacer between the porphyrin and the sugar unit.  相似文献   

14.
To analyze both hemoglobin (Hb) and globin chain variants, we modified a commonly used method, capillary isoelectric focusing (CIEF), with detection at 280 nm. The samples were hemolysates prepared from red blood cells, and globin chains obtained from the hemolysates by treatment with cold acidified acetone. When the migration time for the internal reference, carbonic anhydrase I (isoelectric point, pI 6.60), was taken as 1.0, the migration ratio for Hb A0 in normal human blood was 0.877 +/- 0.004 (mean +/- SD, n = 9), and those of the alpha- and beta-globin chains were 0.673 +/- 0.004 and 0.847 +/- 0.005 (mean +/- SD, n = 4), respectively. The ratio of peak heights between the beta- and alpha-globin chains (beta/alpha) in the normal Hbs obtained from four subjects was almost constant at 2.5 +/- 0.1 (mean +/- SD). This ratio indicates which of the globin chains includes a mutation (if one exists). When an Hb variant, Hb Hoshida (in which Gln is substituted for Glu at residue 43 in the beta-globin chain), was analyzed by this method, two main peaks were observed (migration ratios 0.836 and 0.877, corresponding to an abnormal and the normal Hb, respectively). An additional peak with an abnormal migration ratio of 0.788 was also detected in the globin chain profiles. The ratio of peak heights between normal beta- and alpha-globin chains was 1.57, indicating that a mutation exists in the beta-globin chain. We thus established a convenient system using CIEF that provides a rapid and reproducible method for the random analysis of both Hb and globin chain variants.  相似文献   

15.
A Au-Si liquid metal ion source which produces Au(n) clusters over a large range of sizes was used to study the dependence of both the molecular ion desorption yield and the damage cross-section on the size (n = 1 to 400) and on the kinetic energy (E = 10 to 500 keV) of the clusters used to bombard bioorganic surfaces. Three pure peptides with molecular masses between 750 and 1200 Da were used without matrix. [M+H](+) and [M+cation](+) ion emission yields were enhanced by as much as three orders of magnitude when bombarding with Au(400) (4+) instead of monatomic Au(+), yet very little damage was induced in the samples. A 100-fold increase in the molecular ion yield was observed when the incident energy of Au(9) (+) was varied from 10 to 180 keV. Values of emission yields and damage cross-sections are presented as a function of cluster size and energy. The possibility to adjust both cluster size and energy, depending on the application, makes the analysis of biomolecules by secondary ion mass spectrometry an extremely powerful and flexible technique, particularly when combined with orthogonal time-of-flight mass spectrometry that then allows fast measurements using small primary ion beam currents.  相似文献   

16.
Alkali metal cation adducts, [M+Alk](+), and [M-H](-) ions of four known glycosylated furofuran lignans, (+)-pinoresinol 4-O-beta-D-glucopyranoside, (+)-phylliroside, (+)-8-hydroxypinoresinol 4-O-beta-D-glucopyranoside, and (+)-8-hydroxypinoresinol 8-O-beta-D-glucopyranoside, recently isolated from Carex distachya, were generated by electrospray ionization and allowed to undergo collisionally activated dissociation (CAD) in a quadrupole ion trap (QIT) and in a triple quadrupole (TQ) mass spectrometer. CAD mass spectra of [M+Na](+) and [M+Li](+) adducts revealed the presence of structurally diagnostic product ions. CAD mass spectra of deprotonated glycosylated furofuran lignans showed the typical neutral loss of 162 Da when the glucose residue was bound to a phenolic oxygen atom. When glycosylation occurred at an alcoholic oxygen, as for (+)-8-hydroxypinoresinol 8-O-beta-D-glucopyranoside, a neutral loss of 180 Da represented the main fragmentation pathway. Selective hydrogen/deuterium (H/D) exchange of all the acidic hydrogen atoms of furofuran glycosides, performed by introducing lignan glycosides in D(2)O/CH(3)OD solutions, were employed to obtain information on the nature of the product ions generated during TQ/CAD processes. Energy-resolved TQ/CAD mass spectra of deprotonated lignan glycosides and their deprotonated aglycones were used in a qualitative way to infer information on the integrated energetic picture of CAD fragmentations and to investigate the mechanism of the predominant dissociation/isomerization processes. On the basis of the hypothesized fragmentation mechanisms, gas-phase features of the furofuran ring were derived. The presence of an OH substituent in the C8 position decreased the electron density in the adjacent C8' position, modifying the fragmentation pathway.  相似文献   

17.
Lectin from the seeds of Dioclea sclerocarpa (DSL) was purified in a single step by affinity chromatography on a Sephadex G-50 column. The primary sequence, as determined by tandem mass spectrometry, revealed a protein with 237 amino acids and 81% of identity with ConA. DSL has a molecular mass of 25,606 Da. The β and γ chains weigh 12,873 Da and 12,752 Da, respectively. DSL hemagglutinated rabbit erythrocytes (both native and treated with proteolytic enzymes), showing stability even after one hour of exposure to a specific pH range. The hemagglutinating activity of DSL was optimal between pH 6.0 and 8.0, but was inhibited after incubation with D-galactose and D-glucose. The pure protein possesses a molecular mass of 25 kDa by SDS-PAGE and 25,606 Da by mass spectrometry. The secondary structure content was estimated using the software SELCON3. The results indicate that b-sheet secondary structures are predominant in DSL (approximately 42.3% antiparallel b-sheet and 6.7% parallel b-sheet). In addition to the b-sheet, the predicted secondary structure of DSL features 4.1% a-helices, 15.8% turns and 31.3% other contributions. Upon thermal denaturation, evaluated by measuring changes in ellipticity at 218 nm induced by a temperature increase from 20 °C to 98 °C, DSL displayed cooperative sigmoidal behavior with transition midpoint at 84 °C and permitted the observation of two-state model (native and denatured).  相似文献   

18.
Atomic masses and isotopic abundances are independent and complementary properties for discriminating among ion compositions. The number of possible ion compositions is greatly reduced by accurately measuring exact masses of monoisotopic ions and the relative isotopic abundances (RIAs) of the ions greater in mass by +1 Da and +2 Da. When both properties are measured, a mass error limit of 6-10 mDa (< 31 ppm at 320 Da) and an RIA error limit of 10% are generally adequate for determining unique ion compositions for precursor and fragment ions produced from small molecules (less than 320 Da in this study). 'Inherent interferences', i.e., mass peaks seen in the product ion mass spectrum of the monoisotopic [M+H]+ ion of an analyte that are -2, -1, +1, or +2 Da different in mass from monoisotopic fragment ion masses, distort measured RIAs. This problem is overcome using an ion correlation program to compare the numbers of atoms of each element in a precursor ion to the sum of those in each fragment ion and its corresponding neutral loss. Synergy occurs when accurate measurement of only one pair of +1 Da and +2 Da RIAs for the precursor ion or a fragment ion rejects all but one possible ion composition for that ion, thereby indirectly rejecting all but one fragment ion-neutral loss combination for other exact masses. A triple-quadrupole mass spectrometer with accurate mass capability, using atmospheric pressure chemical ionization (APCI), was used to measure masses and RIAs of precursor and fragment ions. Nine chemicals were investigated as simulated unknowns. Mass accuracy and RIA accuracy were sufficient to determine unique compositions for all precursor ions and all but two of 40 fragment ions, and the two corresponding neutral losses. Interrogation of the chemical literature provided between one and three possible compounds for each of the nine analytes. This approach for identifying compounds compensates for the lack of commercial ESI and APCI mass spectral libraries, which precludes making tentative identifications based on spectral matches.  相似文献   

19.
Diaspirin cross-linked hemoglobin (DCLHb), a hemoglobin-based oxygen carrier exhibiting near physiological oxygen binding capability and devoid of nephrotoxic side effects, was previously found, by gel permeation, reversed-phase high performance liquid chromatography (RP-HPLC) and mass spectrometry, to consist of ca. 94% cross-linked product (reacted on the Lys 99 of two alpha-chains), accompanied by ca. 6% cross-linked Hb, which also reacted on the Lys 132 and/or Lys-144 of the beta-chains and a small amount of intermolecularly cross-linked dimers. However, conventional isoelectric focusing in carrier ampholyte buffers (CA-IEF) gave an unexpected spectrum of four major, almost equally represented, pI species in the pH range of 6.82-7.01, a band of mid-intensity with a pI of 7.11, and two minor components with pls of 6.73 and 6.77. This extraordinary polydispersity was reevaluated by other surface charge probes, such as immobilized pH gradients (IPG) and capillary zone electrophoresis (CZE) of native and denatured globin chains. IPGs of DCLHb gave the expected spectrum of bands, consisting of a main component (92%) with pl 7.337 and three additional minor bands, with lower pIs, representing ca. 8% of the total. These data were in agreement with CZE profiles of native DCLHb, which resolved, in addition to the main DCLHb peak, 3-4 minor components representing ca. 10% of the total. Also, CZE of denatured, heme-free globin chains gave the expected pattern with only traces of minor, extrareacted species. The latter technique, in addition to resolving alpha- and beta-globin chains in a 1:1 ratio in control Hb, resolved a free beta- and the alpha-alpha-dimer in DCLHb. In a 1:1 mixture of control and DCLHb, three peaks were observed, eluting in the order alpha-, alpha-alpha- and beta-globin chains. The identity of the major DCLHb and of the minor species was ascertained by mass spectrometry.  相似文献   

20.
High-performance liquid chromatography coupled with electrospray ionization multi-stage tandem mass spectrometry (HPLC/ESI-MS(n)) was applied to characterize and identify triterpenoid saponins in crude extracts from nine species of Clematis L. After separation on a Zorbax SB-C(18) column, negative ESI-MS experiments were performed. The quasi-molecular ions [M-H]-, [M+Cl]- and [M+HCOO]- were observed in the full-scan MS spectra of all compounds. The MS(n) (n = 2-4) data of the [M-H]- ions provided structural information on the sugar sequence of the oligosaccharide chains and on the aglycone of the saponins. In addition, the fragmentation mechanisms could be deduced from the fragment ions. As a result, eight saponins were unambiguously identified in C. ganpiniana by comparison with reference compounds. In addition, a new compound was tentatively identified as 3-O-ribopyranosyl --> rhamnopyranosyl --> (glucopyranosyl) --> arabinopyranosylhederagenin 28-O-rhamnopyranosyl --> glucopyranosyl --> glucopyranosyl ester (peak 1), and another one was tentatively deduced to be 3-O-glucopyranosyl --> ribopyranosyl --> rhamnopyranosyl --> arabinopyranosylhederagenin 28-O-rhamnopyranosyl --> glucopyranosyl --> glucopyranosyl ester (peak 5) from the genus Clematis L. for the first time. By ESI-MS(n), non-isomeric saponins could be discriminated rapidly. It is of interest that cleavage preferentially occurrs at the ester bond at C-28 and the charge is easy to transfer onto the oligosaccharide chain when the ester bond of a monodesmosidic saponin like HNH cleaves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号