首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Diphenyldiacetylene Complexes of Molybdenum (IV) and Tungsten (IV). Crystal Structures of PPh4[WCl5(Ph? C?C? C?C? Ph)] · CCl4 and PPh4[WCl5(Ph? C?C? C(Br)?C(Br)? Ph)] · CCl4 Syntheses and i.r. spectra of the following diphenyldiacetylene complexes are reported: [MoCl4(Ph? C?C? C?C? Ph)]2( 1 ), [WCl4(Ph? C?C? C?C? Ph)]2 ( 2 ), PPh4[WCl5(Ph? C?C? C?C? Ph)] · CCl4 ( 3 ). 1 is formed in the reaction of MoCl5 with excess diphenyldiacetylene. 2 is prepared from WCl6 and excess diphenylacetylene with additional C2Cl4 as a reducing agent. Reaction of 2 with PPh4Cl in CH2Cl2 solution in the presence of CCl4 yields 3 . The complexes contain one of the acetylene functions bonded in a metallacyclopropene ring; the metal atoms are seven-coordinated. 2 reacts with bromine to from the dibromide [WCl4(Ph? C?C? C(Br)? Ph)]2 (4). In CH2Cl2 solution and in presence of ccl4 4 is turned into the ionic complex PPh4[Ph? C?C? C(Br)? Ph] · CCl4 (5) by PPh4Cl. The complexes 3 and 5 are characterized by structural analyses on the basis of X-Ray diffraction data. 3 crystallized monoclinic in the space group p21/n with four formula units per unit cell (2623 observed, independent reflexions, R = 5.4%). 5 crystallized in the same space group, set P21/c, the unit cell containing four formula units (2537 observed, independent reflexions, R = 5.4%). Both complexes consist of tetraphenylphosphonium cations and anions, in which the tungsten atoms are coordinated by five chlorine and two carbon atoms, the latter bonding side-on, in an approximately symmetrical way. In addition the lattices contain one molecule CCl4 per formula unit. The acetylene ligand causes a strong trans-effect. As a result the W? Cl bond lengths in trans-position are by 10 pm longer than those in cis-position. Bromination of the second acetylene function of 3 leads to addition in trans-position (5).  相似文献   

2.
Reaction of 2,2-Dimethylpropylidynephosphane with Tungsten Hexachloride as well as the Crystal Structures of [(Cl3PO)WCl4(H9C4? C?C—C4H9)] and [(H5C6)4As][WCl6] The reaction of 2,2-dimethylpropylidynephosphane, (CH3)3C? C?P|, with tungsten hexachloride suspended in POCl3 results, with oxidation of the phosphorus atom, in 2,2,5,5-tetramethylhex-3-yne. This compound reacts with tungsten tetrachloride simultaneously formed to give the alkyne complex [(Cl3PO)WCl4(H9C4? C?C—C4H9)], which is dark green in colour. A small amount of tungsten hexachloride is reduced merely to tungsten pentachloride; after the addition of tetraphenyl arsonium chloride it can be isolated as [(H5C6)4As][WCl6]. For this compound, a new and very simple synthesis from WCl6, [(H5C6)4As]Cl and C2Cl4 as reducing agent is described. The structure of [(Cl3PO)WCl4(H9C4? C?C? C4H9)] has been determined from X-ray diffraction data (R = 5.8%). The complex crystallizes in the monoclinic space group P21/n with: {a = 1510; b = 1517; c = 849 pm; β = 93.1°; Z = 4}. The tungsten atom is sevenfold coordinated by four equatorial chlorine atoms, by the C°C group of the acetylene ligand and by the oxygen atom of the POCl3 molecule in trans position. The bulky acetylene ligand which is nearly symmetrically bound shifts the chlorine atoms towards the solvated POCl3 molecule so that no common plane with the tungsten atom is possible. With 130 pm the C°C bond length of the 2,2,5,5-tetramethyl-3-yne ligand corresponds to a C°C double bond. The i.r. spectrum of [(H5C6)As][WCl6] shows two WCl6 strectching vibrations and therefore proves a reduction of octahedral symmetry. In agreement with the results of a crystal structure determination (space group P4/n; a = 1301; c = 780 pm; Z = 2.7%) the [WCl6]?-anion has nearly exact C4V symmetry with somewhat shorter W? Cl bond lengths parallel to the fourfold axis of rotation.  相似文献   

3.
Diiodoacetylene Complexes of Tungsten(IV). Crystal Structure of PPh4[WCl5(C2I2)] · 0.5 CH2Cl2 Tungsten hexachloride and diiodoacetylene react in CCl4 solution forming [WCl4(I? C?C? I)]2 which has a dimer structure with chloro bridges. In CH2Cl2, it reacts with PPh4Cl yielding PPh4[WCl5(I? C?C? I)] · 0.5 CH2Cl2. In both compounds the C2I2 ligands attain a marked increase in thermal stability by their side-one coordination to the tungsten atoms. The crystal structure of the PPh4 salt was determined with X-ray diffraction data (3879 observed reflexions, R = 0.050). PPh4[WCl5(C2I2)] · 0.5 CH2Cl2 crystallizes in the space group P21/n with 8 formula units per unit cell. The lattice constants are a = 1723.0, b = 1681.2, c = 2214.6 pm and β = 94.38°. There are two crystallographically independent [WCl5(C2I2)]? ions which differ only slightly from one another. The C2I2 ligand has a staggered arrangement relative to the W? Cl groups, with C? C bond lengths of 127 pm. The infrared spectra are discussed.  相似文献   

4.
Dichloro Acetylene as Complex Ligand. Crystal Structure of PPh4[WCl5(C2Cl2)] · 0.5 CCl4 Tungsten hexachloride and dichloro acetylenediethyletherate react in boiling CCl4 in presence of C2Cl4 as reducing agent forming [Et2O · WCl4(C2Cl2)]. In vacuo the complex looses ether giving the dichloro acetylene complex [WCl4(C2Cl2)]2 which is dimeric with chloro bridges. Both complexes react with tetraphenylphosphonium chloride to form PPh4[WCl5(C2Cl2)] which is equally prepared by ligand exchange of PPh4[WCl5(C2I2)] with silver chloride. All dichloro acetylene complexes are red to brown crystalline solids sensitive to moisture, and are thermally and mechanically very stable compared with the highly explosive dichloro acetylene. The compounds are characterized by their i.r. spectra; [Et2O · WCl4(C2Cl2)] was additionally investigated by 13C-nmr spectroscopy. PPh4[WCl5(C2Cl2)] · 0.5 CCl4 formes dark brown crystals; according to the structural investigation by X-ray diffraction methods the compound crystallizes orthorhombic in the space group Pbca with 8 formula units per unit cell (1317 observed, independent reflexions, R = 0.049). The cell dimensions are a = 1702 pm, b = 1675 pm and c = 2228 pm. The compound consists of [WCl5(C2Cl2)]? anions and PPh4⊕ cations including CCl4 molecules without bonding interactions. The tungsten atoms are seven-coordinated by five chlorine atoms and two carbon atoms. The dichloro acetylene ligand is bonded symmetrically side-on and has a C? C bond length of 128 pm. The W? C distances are 201 pm, the four equatorial Cl atoms have W? Cl bond lengths of 234 pm whereas the chlorine atom in trans-position to the W? C2 group is situated in a distance of 244 pm.  相似文献   

5.
A series of ruthenium alkenylacetylide complexes trans-[Ru{C≡CC(=CH2)R}Cl(dppe)2] (R=Ph ( 1 a ), cC4H3S ( 1 b ), 4-MeS-C6H4 ( 1 c ), 3,3-dimethyl-2,3-dihydrobenzo[b]thiophene (DMBT) ( 1 d )) or trans-[Ru{C≡C-cC6H9}Cl(dppe)2] ( 1 e ) were allowed to react with the corresponding propargylic alcohol HC≡CC(Me)R(OH) (R=Ph ( A ), cC4H3S ( B ), 4-MeS-C6H4 ( C ), DMBT ( D ) or HC≡C-cC6H10(OH) ( E ) in the presence of TlBF4 and DBU to presumably give alkenylacetylide/allenylidene intermediates trans-[Ru{C≡CC(=CH2)R}{C=C=C(Me)}(dppe)2]PF6 ([ 2 ]PF6). These complexes were not isolated but deprotonated to give the isolable bis(alkenylacetylide) complexes trans-[Ru{C≡CC(=CH2)R}2(dppe)2] (R=Ph ( 3 a ), cC4H3S ( 3 b ), 4-MeS-C6H4 ( 3 c ), DMBT ( 3 d )) and trans-[Ru{C≡C-cC6H9}2(dppe)2] ( 3 e ). Analogous reactions of trans-[Ru(CH3)2(dmpe)2], featuring the more electron-donating 1,2-bis(dimethylphosphino)ethane (dmpe) ancillary ligands, with the propargylic alcohols A or C and NH4PF6 in methanol allowed isolation of the intermediate mixed alkenylacetylide/allenylidene complexes trans-[Ru{C≡CC(=CH2)R}{C=C=C(Me)}(dmpe)2]PF6 (R=Ph ([ 4 a ]PF6), 4-MeS-C6H4 ([ 4 c ]PF6). Deprotonation of [ 4 a ]PF6 or [ 4 c ]PF6 gave the symmetric bis(alkenylacetylide) complexes trans-[Ru{C≡CC(=CH2)R}2(dmpe)2] (R=Ph ( 5 a ), 4-MeS-C6H4 ( 5 c )), the first of their kind containing the dmpe ancillary ligand sphere. Attempts to isolate bis(allenylidene) complexes [Ru{C=C=C(Me)R}2(PP)2]2+ (PP=dppe, dmpe) from treatment of the bis(alkenylacetylide) species 3 or 5 with HBF4 ⋅ Et2O were ultimately unsuccessful.  相似文献   

6.
7.
[WCl4(Me3Si? C?C? SiMe3)]2. Synthesis, I.R. Spectrum, and Crystal Structure The title compound is obtained from tungsten hexachloride and bis-trimethylsilyl acetylene in the presence of C2Cl4 in dichloro methane, forming green crystals. The complex is characterized by the mass spectrum, the i.r. spectrum, and by a structural analysis with the aid of X-ray diffraction data. [WCl4(Me3Si? C?C? SiMe3)]2 crystallizes triclinic in the space group P1 with one dimeric formula unit per unit cell (2 231 observed, independent reflexions, R = 4.6%). The cell dimensions are a = 928, b = 938, c = 1 080 pm; α = 115.3°, β = 91.9°, γ = 100.0°. The complex forms centrosymmetric dimers, the units being linked by chloro bridges of bond lengths W? Cl 244 and 272 pm. The trans-position to the long W? Cl bridge is occupied by the acetylene ligand which is bonded side-on with identical W? C bond lengths of 203 pm. Together with the three terminal chlorine ligands (mean W? Cl distance 231 pm) the tungsten atom achieves coordination number seven.  相似文献   

8.
Treatment of N-(2-chlorobenzylidene)-N,N-dimethyl-1,3-propanediamine (1) and N-(2-bromo-3,4-(MeO)2-benzylidene)-N,N-dimethyl-1,3-propanediamine (20) with tris(dibenzylideneacetone)dipalladium(0) in toluene gave the mononuclear cyclometallated complexes [Pd{C6H4C(H)=NCH2CH2CH2NMe2}(Cl)] (2) and [Pd{3,4-(MeO)2C6H2C(H)=NCH2CH2CH2NMe2}(Br)] (21), respectively, via oxidative addition reaction with the ligand as a C,N,N terdentate ligand. Reaction of 2 with sodium bromide or iodide in an acetone–water mixture gave the cyclometallated analogues of 2, [Pd{C6H4C(H)=NCH2CH2CH2NMe2}(Br)] (3) and [Pd{C6H4C(H)=NCH2CH2CH2NMe2}(I)] (4), by halogen exchange. The X-ray crystal structures of 2, 3 and 4 were determined and discussed. Treatment of 2, 3, 4 and 21 with tertiary monophosphines in acetone gave the mononuclear cyclometallated complexes [Pd{C6H4C(H)=NCH2CH2CH2NMe2}(L)(X)] (6: L=PPh3, X=Cl; 7: L=PPh3, X=Br; 8: L=PPh3, X=I; 9: L=PMePh2, X=Cl; 10: L=PMe2Ph, X=Cl) and [Pd{3,4-(MeO)2C6H2C(H)=NCH2CH2CH2NMe2}(L)(Br)] (22: L=PPh3; 23: L=PMePh2; 24: L=PMe2Ph). A fluxional behaviour due to an uncoordinated CH2CH2CH2NMe2 could be determined by variable temperature NMR spectroscopy. Treatment of 2, 3 and 4 with silver trifluoromethanesulfonate followed by reaction with triphenylphosphine gave the mononuclear complex [Pd{C6H4C(H)=NCH2CH2CH2NMe2}(PPh3)][F3CSO3] (11) where the Pd–NMe2 bond was retained. Reaction of 2, 3 and 4 with ditertiary diphosphines in a cyclometallated complex–diphosphine 2:1 molar ratio gave the binuclear complexes [{Pd[C6H4C(H)=NCH2CH2CH2NMe2](X)}2(μ-L–L)][L–L=PPh2(CH2)4PPh2(dppb) (13, X=Cl; 14, X=Br; 15, X=I; L–L=PPh2(CH2)5PPh2(dpppe): 16, X=Cl; 17, X=Br; 18, X=I) with palladium–NMe2 bond cleavage. Treatment of 2, 3 and 4 with ditertiary diphosphines, in a cyclometallated complex–diphosphine 2:1, molar ratio and AgSO3CF3 gave the binuclear cyclometallated complexes [{Pd[C6H4C(H)=NCH2CH2CH2NMe2]}2(μ-L–L)][F3CSO3]2 (11: L–L=PPh2(CH2)4PPh2(dppb), X=Cl; 12: L–L=PPh2(CH2)5PPh2 (dpppe), X=Cl). Reaction of 2 with the ditertiary diphosphine cis-dppe in a cyclometallated complex–diphosphine 1:1 molar ratio followed by treatment with sodium perchlorate gave the mononuclear cyclometallated complex [Pd{C6H4C(H)=NCH2CH2CH2NMe2}(cis-PPh2CH=CHPPh2–P,P)][ClO4] (19).  相似文献   

9.
Thallium [1-(p-tolylimino)-2-methylpropyl]cyclopentadienide, Tl[C5H4C(=NC6H4CH3)CH(CH3)2], was prepared and treatment of the salt with [{PdCl2(PREt2)}2] (R = Ph and Et) yielded mononuclear palladium(II) complexes, [Pd{η5-C5H4C(=NC6H4CH3)CH(CH3)2}Cl(PREt2)], with an imidoyl-substituted η5-cyclopentadienyl group. In addition, [Pd(η5-C5H4-COY)Cl(PPhEt2)] (Y = CH3 and OCH3) complexes were obtained from the sodium salts of their substituted cyclopentadienyl groups. These new compounds were characterized by means of 1H and 13C NMR and IR spectroscopy.  相似文献   

10.
Treatment of [M2(μ‐Cl)2(cod)2] (M=Ir and Rh) with Na[H2B(bt)2] (cod=1,5‐cyclooctadiene and bt=2‐mercaptobenzothiazolyl) at low temperature led to the formation of dimetallaheterocycles [(Mcod)2(bt)2], 1 and 2 ( 1 : M=Ir and 2 : M=Rh) and a borate complex [Rh(cod){κ2‐S,S′‐H2B(bt)2}], 3 . Compounds 1 and 2 are structurally characterized metal analogues of 1,5‐cyclooctadiene. Metal–metal bond distances of 3.6195(9) Å in 1 and 3.6749(9) Å in 2 are too long to consider as bonding. In an attempt to generate the Ru analogue of 1 and 2 , that is [(Rucod)2(bt)2], we have carried out the reaction of [Ru(Cl)2(cod)(CH3CN)2] with Na[H2B(bt)2]. Interestingly, the reaction yielded agostic complexes [Ru(cod)L{κ3‐H,S,S′‐H2B(bt)2}], 4 and 5 ( 4 : L=Cl; 5 : L=C7H4NS2). One of the key differences between 4 and 5 is the presence of different ancillary ligands at the metal center. The natural bond orbital (NBO) analysis of 1 and 2 shows that there is four lone pairs of electrons on each metal center with a significant amount of d character. Furthermore, the electronic structures and the bonding of these complexes have been established on the ground of quantum‐chemical calculations. All of the new compounds were characterized by IR, 1H, 11B, 13C NMR spectroscopy, and X‐ray crystallographic analysis.  相似文献   

11.
The first example of the catalytic C? CN bond cleavage of acetonitrile as well as Si? CN bond formation have been achieved in the photoreaction of MeCN with Et3SiH promoted by [Cp(CO)2FeMe]. This catalytic system is applicable to other organonitriles. Several iron complexes [(η5‐C5R5)(CO)2FeR′] (R5=H5, H4Me, Me5, H4SiMe3, H4I, H4P(O)(OMe)2; R′=SiMe3, CH2Ph, Me, Cl, I) were examined as catalyst, and [Cp(CO)2FeMe] was found to be the best precursor. A catalytic reaction cycle was proposed, which involves oxidative addition of Et3SiH to [Cp(CO)FeMe], reductive elimination of CH4 from [Cp(CO)FeMe(H)(SiEt3)], coordination of RCN to [Cp(CO)Fe(SiEt3)], silyl migration from Fe to N in the coordinated RCN, and dissociation of Et3SiNC from Fe. The reaction with MeCN of [Cp(CO)Fe(py)(SiEt3)], which was newly prepared and determined by X‐ray analysis, and the reaction of Et3SiH with MeCN in the presence of a catalytic amount of [Cp(CO)Fe(py)(SiEt3)] showed that the 16‐electron species [Cp(CO)Fe(SiEt3)] is the active species in the catalytic cycle (TON up to 251).  相似文献   

12.
[Ir(cod)Cl]2 (cod = 1,5-cyclooctadiene) reacts with PMe2Ph in CH3CN to give the red cation [Ir(PMe2Ph)4]+. This complex in CH3CN reacts with H2 to give cis-[IrH2(PMe2Ph)4]+, but on reflux for 6 h in the absence of H2, it gives the first example of a cyclometallated PMe2Ph complex fac-[IrH(PMe2C6H4)(PMe2Ph)3]+, as shown by PMR spectroscopy and preliminary X-ray crystallographic data.  相似文献   

13.
Facile ligand substitutions are observed when the neutral ruthenium cyclopropenyl complex (PPh3)[Ru]-CC(Ph)CHCN (1, [Ru] = Tp(PPh3)Ru) is treated with MeCN and pyrazole yielding the nitrile substituted ruthenium cyclopropenyl complex (MeCN)[Ru]-CC(Ph)CHCN (4a) and the ruthenium metallacyclic pyrazole complex (C3H3NN)[Ru]-CC(Ph)CH2CN (7a), respectively. The reactions of Me3SiN3 with 1, 4a and 7a are investigated. Treatment of 1 with Me3SiN3 affords in high yield the cationic N-coordinated nitrile complex {(PPh3)[Ru]NCCH(Ph)CH2CN}N3 (3). Interestingly, the reaction of 4a with Me3SiN3 in CH2Cl2 in the presence of NH4PF6 results in an insertion of four nitrogen atoms into the Ru-Cα bond to form a diastereomeric mixture of the bright yellow zwitterionic tetrazolate complex (MeCN)[Ru]-N4CCH(Ph)CH2CN (6a) in a 3:2 ratio. The reaction of 7a with Me3SiN3 gives the zwitterionic tetrazolate complex (C3H3NNH)[Ru]-N4CCH(Ph)CH2CN (9a). The two cationic tetrazolate complexes {(C3H3NNH)[Ru]-N4(R)CCH(Ph)CH2CN}+ (12a, R = CH3, 12b, R = C6H5CH2) are prepared by electrophilic addition of organic halides to 9a. All of the complexes are identified by spectroscopic methods as well as elemental analysis. Pathways for the synthesis of these compounds are proposed.  相似文献   

14.
Preparation of Compounds AWCl6 from WCl6 in Cl?-containing Solvents In Glyme, ACN or CH2Cl2 WCl6 is reduced by Cl? to WCl6?. From those solutions compounds AWCl6 can be isolated with A = Cs (Glyme, ACN), A = Rb, K, NH4(ACN) and A = N(C2H5)4 (CH2Cl2). By concentrating of glyme-solutions a precipitate of A2WCl6 is formed by disproportionation. In methanol/HCl also solvolysis to oxo-compounds of W6+ takes place as function of the H+-concentration. With N(C2H5)4Cl not only chlorotungstates but also methoxy- and oxo-spezies of W5+ can be isolated.  相似文献   

15.
Reaction of [Au(C6F5)(tht)2Cl](OTf) with RaaiR′ in CH2Cl2 medium leads to [Au(C6F5)(RaaiR′)Cl](OTf) [RaaiR′ = p-R–C6H4–N=N–C3H2–NN-1-R′, (1–3), abbreviated as N,N′-chelator, where N(imidazole) and N(azo) represent N and N′, respectively; R = H (a), Me (b), Cl (c) and R′ = Me (1), CH2CH3 (2), CH2Ph (3), tht is tetrahydrothiophen]. The maximum molecular peak of [Au(C6F5)(MeaaiMe)Cl] is observed at m/z 599.51 (100 %) in the FAB mass spectrum. Ir spectra of the complexes show –C=N– and –N=N– stretching near at 1590 and 1370 cm−1 and near at 1510, 955, 800 cm−1 due to the presence of pentafluorophenyl ring. The 1H-NMR spectral measurements suggest methylene, –CH2–, in RaaiEt gives a complex AB type multiplet while in RaaiCH2Ph shows AB type quartets. 13C-NMR spectrum of complexes confirm the molecular skeleton. In the 1H-1H-COSY spectrum as well as contour peaks in the 1H-13C HMQC spectrum for the present complexes, assign the solution structure and stereoretentive conformation. The electrochemistry gives the ligand reduction peaks.  相似文献   

16.
Chlorothionitrene Complexes of Tungsten. Crystal Structure of [WCl4(NSCl)]2 Tungsten hexachloride reacts with trithiazyl chloride, (NSCl)3, yielding the chlorothionitrene complex [WCl4(NSCl)]2, from which AsPh4[WCl5(NSCl)] can be obtained by reaction with AsPh4Cl. Both complexes are characterized by their i.r. spectra. The crystal structure of [WCl4(NSCl)]2 was determined and refined with X-ray diffraction data (1059 reflexes, R = 0.055). It crystallizes in the monoclinic space group P21/n with the lattice constants a = 1523, b = 904, c = 583 pm and β = 91.35°. In the unit cell there are two centrosymmetric [WCl4(NSCl)]2 molecules in which the W atoms are linked via two chloro bridges; short and long W? Cl distances (244 and 265 pm) alternate in the W2Cl2 ring, the NSCl groups are found in the trans positions to the longer W? Cl bonds. The WNS bond angle (175°) and short bond distances correspond to a formulation .  相似文献   

17.
The diiron ynamine complexes [Fe2(CO)7{μ-C(R)C(NEt2)}] (1) (R=Me, Ph, C3H5, SiMe3) react with theN-sulfinylaniline, PhNSO, in refluxing hexane to yield the complexes [Fe2(CO)6{μ-N(Ph)C(Me)S}] (2), [Fe2(CO)6{μ-N(Ph)C(NEt2)C(Ph)S}] · 0.5C6H12 (3), [Fe2(CO)6{μ-C(C3H5)C(NEt2)N(Ph)SO}] · 0.5CH2Cl2 (4), and [Fe2(CO)6{μ-C(SiMe3)C(NEt2)S)}] (5). Compound 5 was found to be identical to the previously reported product obtained from the reaction of 1 with sulfur. Compounds 2, 3, and 4 were characterized by single crystal X-ray diffraction analyses. Crystal data: for 2: space group = P21/n,a=9.533(1) Å,b=18.830(4) Å,c=12.705(4) Å, β=107.01(2)°,Z=4, 2687 reflections,R=0.027; for 3: space group=P21/n,a=13.660(2) Å,b=19.096(8) Å,c=10.972(2) Å, β=90.62(1)°,Z=4, 2821 reflections,R=0.036; for 4: space group=P21/a,a=18.098(5) Å,b=16.564(4) Å,c=18.548(2) Å, β=115.44(2)°,Z=4, 3569 reflections,R=0.041. Complexes 2 and 3 result from fragmentation of theN-sulfinylaniline ligand and insertion of the nitrene grouping into the Fe=C(aminocarbene) bond, whereas the sulfur atom inserts into one Fe-C bond of the bridging carbene. Compound 4 is formed by insertion of the entireN-sulfinyl aniline ligand into the Fe=C(aminocarbene) bond. All three complexes have basket-like arachno structure isolobal to the benzvalene one.  相似文献   

18.
The complexes Mo{HB(Me2pyz)3}(NO)XY {HB(Me2pyz)3  HB(3, 5-Me2C3HN2)3; X=Y=F, Cl or Br; X=F, Y=OEt, NHMe or SBun; X=Cl, Y=NHR (R=Me Et, Bun, Ph, p-MeC6H4), NMe2 and SR (R=Bun, C6H11, CH2Ph, Ph); X=Br, Y=NHMe, NMe2 and SBun} have been prepared and characterised spectroscopically. Their properties are generally similar to those of their iodo-analogues.  相似文献   

19.
Triorganoantimony and Triorganobismuth Disulfonates. Crystal and Molecular Structure of (C6H5)3M(O3SC6H5)2(M = Sb, Bi) Triorganoantimony disulfonates R3Sb(O3SR′)2 [R = CH3 = Me, C6H5 = Ph; R′ = Me, CH2CH2OH, Ph, 4-CH3C6H4. R = Ph; R′ = 2,4-(NO2)2C6H3], Me3Sb(O3SCF3)2 · 2 H2O and triphenylbismuth disulfonates Ph3Bi(O3SR′)2 [R = Me, CF3, CH2CH2OH, Ph, 4-CH3C6H4, 2,4-(NO2)2C6H3] have been prepared by reaction of Me3Sb(OH)2, (Ph3SbO)2, and Ph3BiCO3, respectively, with the appropriate sulfonic acids. From vibrational data an ionic structure is inferred for Me3Sb(O3SCF3)2 · 2 H2O and Me3Sb(O3SCH2CH2OH)2, and a covalent structure for the other compounds with a penta-coordinated central atom with trigonal bipyramidal surrounding (Ph or Me in equatorial, unidentate sulfonate ligands in apical positions). Ph3M(O3SPh)2 (M = Sb, Bi) crystallize monoclinic [space group P21/c; M = Sb/Bi: a = 1 611.5(8)/1 557.4(9), b = 987.5(6)/1 072,5(8), c = 1 859.9(9)/1 696.5(9) pm, β = 105.71(5)/96.62(5)°; Z = 4; d(calc.) 1.556/1.781 Mg · m?3; Vcell = 2 849.2 · 106/2 814.8 · 106 pm3; structure determination from 3 438/3 078 independent reflexions (I ≥ 3σ(I)), R(unweighted) = 0.030/0.029]. M is bonding to three Ph groups in the equational plane [mean distances Sb/Bi? C:210.1(4)/219.1(7) pm] and two sulfonate ligands with O in apical positions [distances Sb? O: 210.6(3), 212.8(2); Bi? O: 227.6(5), 228.0(4) pm]. Weak interaction of M with a second O atom of one sulfonate ligand is inferred from a rather short M? O contact distance [Sb? O: 327.4(4), Bi? O: 312.9(5) pm], and from the distortion of equatorial angles [C? Sb? C: 128.4(2), 119.2(2), 112.2(2); C? Bi? C: 135.9(3), 117.8(3), 106.3(3)°]  相似文献   

20.
Reaction of [AuIII(C6F5)3(tht)] with RaaiR′ in dichloromethane medium leads to [AuIII(C6F5)3 (RaaiR′)] [RaaiR′=p-R-C6H4-N=N-C3H2-NN-l-R′, (1-3), R = H (a), Me (b), Cl (c) and R′= Me (1), CH2CH3 (2), CH2Ph (3), tht is tetrahydrothiophen]. The nine new complexes are characterised by ES/MS as well as FAB, IR and multinuclear NMR (1H,13C,19F) spectroscopic studies. In addition to dimensional NMR studies as1H,1H COSY and1H13C HMQC permit complete assignment of the complexes in the solution phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号